
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

W911NF-12-1-0008

435-797-7021

MS Thesis

60390-EG.24

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

This work examines the feasibility of a novel high-order numerical method, which has been termed Flux
Correction. This is accomplished by comparing it against another high- order method called Flux Reconstruction.
These numerical methods are used to solve the Navier-Stokes equations, which govern the motion of fluid flow.
High-order numerical meth- ods, or those that demonstrate a third-order and higher solution error convergence rate,
are rarely used on unstructured meshes when solving fluid problems. Flux Correction intends to make high-order
accuracy available to the larger world of Computational Fluid Dynamics in a simple and effective manner. The

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

29-08-2014

Approved for public release; distribution is unlimited.

NUMERICAL EXAMINATION OF FLUX CORRECTION
FOR SOLVING THE NAVIER-STOKES EQUATIONS ON
UNSTRUCTURED MESHES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

computational fluid dynamics, flux correction, flux reconstruction, high-order methods

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Aaron Katz

Dalon Work

622307

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Utah State University
1415 Old Main Hill - Room 64

Logan, UT 84322 -1415

1

ABSTRACT

NUMERICAL EXAMINATION OF FLUX CORRECTION FOR SOLVING THE NAVIER-STOKES
EQUATIONS ON UNSTRUCTURED MESHES

Report Title

This work examines the feasibility of a novel high-order numerical method, which has been termed Flux Correction.
This is accomplished by comparing it against another high- order method called Flux Reconstruction. These
numerical methods are used to solve the Navier-Stokes equations, which govern the motion of fluid flow. High-order
numerical meth- ods, or those that demonstrate a third-order and higher solution error convergence rate, are rarely
used on unstructured meshes when solving fluid problems. Flux Correction intends to make high-order accuracy
available to the larger world of Computational Fluid Dynamics in a simple and effective manner. The advantages and
disadvantages of the method can only be discovered when compared against other high-order numerical methods.
This work accom- plishes this by comparing Flux Correction and Flux Reconstruction in terms of accuracy,
numerical dissipation, and solution times. Flux Correction is found to compare favorably in terms of accuracy, and
exceed expectations for convergence rates. Flux Correction is also tested on high-order meshes, or meshes that use
high-order polynomials in the construction of the unstructured triangle mesh. High-order meshes generate long,thin
elements, which are found to negatively impact the convergence and accuracy of Flux Correction.

2

NUMERICAL EXAMINATION OF FLUX CORRECTION FOR SOLVING THE

NAVIER-STOKES EQUATIONS ON UNSTRUCTURED MESHES

by

Dalon G. Work

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Dr. Aaron J. Katz Dr. Robert Spall
Major Professor Committee Member

Dr. Barton Smith Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014

3

ii

Copyright © Dalon G. Work 2014

All Rights Reserved

4

iii

Abstract

Numerical Examination of Flux Correction for solving the Navier-Stokes Equations on

Unstructured Meshes

by

Dalon G. Work, Master of Science

Utah State University, 2014

Major Professor: Dr. Aaron J. Katz
Department: Mechanical and Aerospace Engineering

This work examines the feasibility of a novel high-order numerical method, which has

been termed Flux Correction. It has been given this name because it “corrects” the flux

terms of an established numerical method, cancelling various error terms in the fluxes and

making the method higher-order. In this work, this change is made to a traditionally

second-order finite volume Galerkin method. To accomplish this, higher-order gradients of

solution variables, as well as gradients of the fluxes are introduced to the method. Gradi-

ents are computed using lagrange interpolations in a fashion reminiscent of Finite Element

techniques. For the Euler Equations, Flux Correction is compared against Flux Reconstruc-

tion, a derivative of the high-order Discontinuous Galerkin and Spectral Difference methods,

both of which are currently popular areas of research in high-order numerical methods. Flux

Correction is found to compare favorably in terms of accuracy, and exceed expectations for

convergence rates. For the full Navier-Stokes Equations, the effect of curved elements are

on Flux Correction are examined. Flux Correction is found to react negatively to curved

elements due to the chosen gradient procedure’s poor handling of high-aspect ratio elements.

(81 pages)

5

iv

Public Abstract

Numerical Examination of Flux Correction for solving the Navier-Stokes Equations on

Unstructured Meshes

by

Dalon G. Work, Master of Science

Utah State University, 2014

Major Professor: Dr. Aaron J. Katz
Department: Mechanical and Aerospace Engineering

This work examines the feasibility of a novel high-order numerical method, which has

been termed Flux Correction. This is accomplished by comparing it against another high-

order method called Flux Reconstruction. These numerical methods are used to solve the

Navier-Stokes equations, which govern the motion of fluid flow. High-order numerical meth-

ods, or those that demonstrate a third-order and higher solution error convergence rate, are

rarely used on unstructured meshes when solving fluid problems. Flux Correction intends to

make high-order accuracy available to the larger world of Computational Fluid Dynamics in

a simple and effective manner. The advantages and disadvantages of the method can only be

discovered when compared against other high-order numerical methods. This work accom-

plishes this by comparing Flux Correction and Flux Reconstruction in terms of accuracy,

numerical dissipation, and solution times. Flux Correction is found to compare favorably

in terms of accuracy, and exceed expectations for convergence rates. Flux Correction is also

tested on high-order meshes, or meshes that use high-order polynomials in the construction

of the unstructured triangle mesh. High-order meshes generate long,thin elements, which

are found to negatively impact the convergence and accuracy of Flux Correction.

6

v

For my wife.
Here’s to many more hectic and fun-filled years together.

For my God,
whose grace has given me a good life.

7

vi

Acknowledgments

This work is supported by the Computational Research and Engineering for Acquisition

Tools and Environments (CREATE) Program, which is sponsored by the U.S. Department

of Defense HPC Modernization Program Office, and by the Army Research Office Fluid

Dynamics Program.

I would like to thank my major professor, Dr. Aaron Katz, for taking a chance on me,

and for patiently helping me through the learning process. I can only hope to be as smart

as him one day.

A special thank you to my friend and mentor Kyle Horne. His enthusiasm for com-

putational methods infected me during my undergraduate career, and placed me on the

academic path I currently walk.

Also to my many friends and family who supported me, even if it was by giving me

incredulous stares as I tried to explain what I was working on, then telling me that it sounds

like great fun. They have spent many years teaching me how to laugh at myself, how to

love, how to cry, and how to care. From such a large group of people I want to single out

my parents, who have loved me, cared for me, prayed for me, taught me, and been there

for me for over 25 years now. My life is what it is because of them.

Last of all I wish to thank my God and my wife. My Lord and Savior Jesus Christ

has been my Exemplar, my Rock, and my Confidence since my teenage years. My wife has

been the best as I spent many long hours on this project. I don’t know why she would ever

consent to marry and put up with a nerd like me. I am eternally grateful for her faith in

me, for her ability to remember the things that I forget, and for her amazing ability to pull

my head out of the clouds and out of the ground. Here’s to many more happy years together!

Dalon G. Work

8

vii

Contents

Page

Abstract . iii

Public Abstract . iv

Acknowledgments . vi

List of Tables . ix

List of Figures . x

Acronyms . xi

1 Introduction . 1
1.1 A Brief History of High-Order Methods . 3

1.1.1 Finite Volume Methods . 3
1.1.2 Finite Element Methods . 4
1.1.3 Other Methods . 5

1.2 Purpose of Thesis . 7
1.3 Thesis Outline . 8

2 Preliminaries . 9
2.1 Governing Equations . 9
2.2 High-Order Meshing . 11
2.3 Method of Manufactured Solutions . 16

3 Flux Correction . 17
3.1 The Effect of Truncation Error on Solution Error 17
3.2 1D Flux-Correction . 19

3.2.1 Traditional Galerkin . 20
3.2.2 Flux-Corrected Galerkin . 22

3.3 2D Flux Correction . 23
3.4 2D Gradient Approximation . 25
3.5 Viscous Terms Consideration . 27

3.5.1 Source Terms . 28
3.6 Unsteady Time Terms . 29
3.7 Solution Method . 29
3.8 Multigrid . 31
3.9 Boundary Conditions . 31

9

viii

4 Flux Reconstruction . 33
4.1 Procedure . 34
4.2 Solution and Flux Point Locations . 38
4.3 Interface Values . 38
4.4 Correction Functions . 38
4.5 Time Integration and values of c . 40

5 Numerical Results . 41
5.1 Method of Manufactured Solutions . 41
5.2 Timing Studies . 42
5.3 Isentropic Vortex . 50
5.4 Unsteady, Viscous Flow over a Circular Cylinder 53

6 Conclusions and Future Work . 57

References . 59

Appendices . 64
A Galerkin Discretization . 65

A.1 Flux Term . 66
A.2 Unsteady/Source Term . 67
A.3 Final Form . 69

10

ix

List of Tables

Table Page

4.1 The four special values of c for C-RK with p = 2 40

5.1 Cylinder Mesh Statistics . 53

5.2 Strouhal Numbers . 56

11

x

List of Figures

Figure Page

1.1 Relationship graph for higher-order methods. 8

3.1 Discretization used in the derivation of the Linear Galerkin Method 19

3.2 Node-centered stencil on a two-dimensional unstructured triangular grid . . 24

3.3 Parent triangles (·) and subtriangles (◦) . 26

3.4 Decomposition of a cubic element into three quadratic elements 28

4.1 Reference triangle used in this work . 34

5.1 Setup for the Method of Manufactured Solutions 42

5.2 MMS Results . 43

5.3 Results from Flux Correction Time Studies. 46

5.4 Results from Flux Reconstruction Time Studies. These plots show two pos-
sible cases. The first is integrating in time using J-RK, the second using
C-RK. 47

5.5 Comparisons from Time Studies. These plots show the comparision of the
J-RK FR timings versus the third-order cubic gradient FC timings and the
third-order cubic gradient full mutli-grid with implicit residual smoothing
and relaxation factors FC. 48

5.6 Isentropic Vortex . 51

5.7 Vortex Results . 52

5.8 Vorticity plot for unsteady cylinder . 54

5.9 Meshes used for unsteady flow over a cylinder 54

5.10 Density convergence plot for the 20× 60 mesh 55

A.1 Discretization used in the derivation of the Linear Galerkin Method 65

12

xi

Acronyms

BDF Backward Difference Formula

BR Bassi-Rebay

CDG Central Discontinuous Galerkin

CFD Computation Fluid Dynamics

CFL Cauchy-Lewis Limit

CF Central Flux

CG Continuous Galerkin

DNS Direct Numerical Simulation

DG Discontinuous Galkerin

ENO Essentially Non-Oscillatory

FC Flux Correction

FD Finite Difference

FE Finite Elements

FR Flux Reconstruction

FV Finite Volume

IP Internal Penalty

LDG Local Discontinuous Galerkin

LES Large Eddy Simulation

LHS Left Hand Side

MMS Method of Manufactured Solutions

NDOF Number of Degrees of Freedom

RHS Right Hand Side

RK Runge-Kutta

RMS Root Mean Square

SD Spectral Difference

13

xii

SUPG Split-Upwind Pressure Galerkin

SV Spectral Volume

VCJ Vincent-Castonguay Jameson

WENO Weighted Essentially Non-Oscillatory

14

1

Chapter 1

Introduction

Computational Fluid Dynamics (CFD) has become a mature, practical, and useful tool

for design of fluid dynamic problems in industry. Many commercial and open source prod-

ucts are available to solve a variety of design issues. Indeed, many integrated product suites

with a multitude of solver strategies, turbulence models, automated meshing of geometries,

and even multiphysics capabilities are generally available. The general solutions available

to the public today are generally second-order accurate in space and time, meaning these

schemes usually fall into the broad categories of Finite Difference (FD), Finite Volume (FV),

or Finite Element (FE) methods [1].

Second-order methods are generally adequate for many problems. However, there are

many problems, rotorcraft design and flapping wings, for example, for which the estab-

lished practices produce too much numerical dissipation and cannot accurately resolve

vortex-dominated flows. Recent advances in turbulence modeling, including Large Eddy

Simulation (LES) and Direct Numerical Simulation (DNS), have been shown to require

reduced numerical dissipation. In order to obtain realistic answers without excessive grid

refinement, methods with a higher order of accuracy (third or greater) are required. While

many higher-order methods have been and are being actively developed in academia, they

have made very little progress into the professional engineering world. This disappointing

result can be ascribed to a few reasons.

First, high-order methods, which generally are more unstable and mathematically stiff

than their low-order counterparts, require more sophisticated solution techniques to keep

them from diverging. Large amounts of work have been done on low-order schemes, ren-

dering them very robust, in that they can be solved quickly for very complex problems,

without risk of the solution being erroneous or diverging.

15

2

Second, high-order methods still do not have reliable techniques to handle strong dis-

continuities in the solution. It is well-known that high-order approximations suffer from

Gibb’s Phenomenon, or oscillations in the approximation that do not exist in the exact

solution. This is especially true in high-gradient regions and discontinuities in the solution.

Low-order methods provide many methods for capturing the interaction of shock waves

without these oscillations.

Third, most high-order methods are different enough from their low-order cousins that

implementing them would require a complete rewrite of a software package code base. Most

software packages in use today have been around for a long time, using code that has been

tweaked, optimized, debugged and polished for a particular methodology and work flow,

encompassing many thousands of lines of code. Having to start from scratch to implement

a more accurate method is a daunting proposition that requires enormous investments of

time, energy, and capital.

While the previous hurdles are great, they are not insurmountable. The purpose of

this thesis is to evaluate a new high-order method called Flux Correction (FC), which

shows much promise in overcoming these hurdles. The Flux Correction Method uses error

analysis to determine where the errors in a traditional, low-order method come from and

then “upgrade” the method to a higher-order. For this work, this is done on a tradition-

ally second-order node-centered Galerkin method and upgraded to a third-order accurate

method.

The end result of FC is to add a correction to the numerical flux that defines the

scheme. The correction, along with an additional gradient computation, is the only change

to the traditional scheme. This allows a code base to be upgraded to third-order with a

single subroutine call and placed in the appropriate location. This overcomes the third

hurdle, as no major rewrites are necessary to a code base. As the traditional method

remains essentially the same, the mature solution techniques and limiters can be applied to

the method to enhance solution time and shock-capturing, thus we have overcome hurdles

one and two.

16

3

This work will detail high-order methods on unstructured meshes instead of structured

meshes. Unstructured meshes allow for the solution of differential equations on complex

geometries by breaking the continuous domain Ω and its boundary Γ into a discrete repre-

sentation of multiple irregularly sized elements or volumes Ωk, each with its own boundary

Γk. The differential equation is then solved on each element in some fashion. Often, numer-

ical methods assume these elements are linear, consisting only of the necessary number of

nodes to form the basic element shape. For example, a linear quadrilateral element consists

of four nodes. It has been shown that high-order methods require high-order elements to

produce accurate answers [2,3]. Curved elements allow for better approximation of the sur-

face geometry, but can possibly lead to badly deformed elements or even invalid elements.

To date, Flux Correction has not yet been tested with curved elements. The effect of curved

elements on Flux Correction is tested in this work.

1.1 A Brief History of High-Order Methods

A few histories of high-order methods have been published in recent years. Two notable

summaries are available by Wang [1] and Vincent and Jameson [4,5]. The summary by Wang

is more of a history, with Jameson focusing on what work needs to be done in order to bring

higher-order methods to a wider audience. Here, these works are summarized to provide

background to the present thesis.

The oldest high-order schemes consist of Finite Difference (FD) methods, Finite Vol-

ume (FV) methods, and Finite Element (FE) methods. Finite Difference uses differential

equations in a strong conservation law form, with the solution variables places along regular

mesh lines. This form of numerical method is generally the first one taught in engineering

courses and is highly intuitive. Designing and implementing high-order methods is rela-

tively easy using FD. FD is not conducive to complex geometries, limiting it’s usefulness to

rather simple geometries. FD methods are not considered further because the topic of this

work is evaluating high-order methods over complex geometries on unstructured meshes.

1.1.1 Finite Volume Methods

17

4

k-Exact

k-Exact (k-E) [6,7] Methods are a direct extension of Godunov-type FV methods. Each

cell holds one solution average. A high-order form of the solution is then constructed within

each cell based off the average values of a surrounding stencil. The method is discontinuous,

and Riemann solvers are used at cell interfaces. Generally these are done at multiple points

on each face, and high-order Gauss quadrature is used to numerically integrate the result.

Integrated flux balances are then used to update the cell averaged solution. k-Exact methods

are not spatially compact, and in 3D the memory requirements can become very large. They

can be oscillatory around shocks, but limiters that lower the order of a cell may be applied.

ENO/WENO

Essentially Non-Oscillatory (ENO) [8, 9] and Weighted Essentially Non-Oscillatory

Methods (WENO) [9–11] are very similar to k-Exact Methods. ENO methods form mul-

tiple solution polynomials and choose the “smoothest” one to represent the solution inside

the cell. This is done to avoid discontinuities in the cell. WENO methods use multiple

solution polynomials, but perform a weighted average of all the polynomials. Similarly,

WENO methods are typically smoother and more accurate than ENO methods for a given

mesh. They also exhibit better steady-state convergence. Limiters are naturally built-in to

the methods as the multiple polynomials can be low-order ones.

1.1.2 Finite Element Methods

Continuous Galerkin

Continuous Galerkin Methods (CG) [12,13] are essentially high-order versions of tradi-

tional FE methods. They employ a higher order polynomial solution inside of the cells, with

neighboring cells sharing the same solution value at the interface. This forms a globally

coupled matrix that must be solved. These methods are compact in nature, and various

strategies have been introduced to decouple the solution and reduce the computational

expense of a full matrix inversion. Like other high-order methods, capturing shocks can

18

5

be difficult, and complicated weighting functions are often introduced to preserve upwind

characteristics. Many methods have been formed, such as the Streamline Upwind Petrov-

Galerkin (SUPG) [14], Galerkin Least-Squares, and Taylor Galerkin.

Discontinuous Galerkin

Discontinuous Galerkin Methods (DG) [15, 16] are similar to their continuous cousins,

except that neighboring elements do not share solution values at the interface. By using

Riemann solvers at the interface from FV methods, upwinding for hyperbolic systems can

be easily implemented. High-orders are easily achievable by increasing the order of the

interior polynomials. Their compact, local nature makes them easy to parallelize. These

advantages have made DG very popular in the past ten years, and it is arguably the most

well-known high-order method. The discontinuous nature of DG requires special treatment

for the viscous terms, for which many solutions have been proposed.

1.1.3 Other Methods

This section describes other high-order methods that don’t fall neatly into the tradi-

tional categories of high-order numerical methods.

Spectral Volume

Spectral Volume Methods (SV) [17, 18] borrows ideas from traditional Finite Volume

methods and k-Exact schemes, and draws ideas from Discontinuous Galerkin methods as

well. Each element is subdivided into sub-elements, with the finite volume equation being

applied to each sub-element. The results are then used to construct a solution polynomial

over the parent element. The method requires many integrations, making it very expensive.

A quadrature-free version has been formulated though, mitigating this need. The methods

are compact in nature, and solution limiting on individual sub-elements is possible to en-

hance shock resolution. It is also capable of leveraging many mature solution convergence

techniques due to its FV background.

19

6

Spectral Difference

Spectral Difference Methods (SD) [19,20] appear to be similar in spirit to FE methods,

but they use the differential form instead of the integral weak form of the governing equa-

tions. In an element, solution points are defined where the solution is known. From these,

an interpolating polynomial can be formed. “Flux” points are defined on the boundaries

of the element. The solution is interpolated to the flux points, and approximate Riemann

solvers are employed to evaluate the flux at element boundaries. The derivative of the flux

is evaluated at the solution points from the interpolating polynomial. This method is a

popular one, as it is easy to understand, compact, and has shown promise in capturing

shocks and utilizing convergence acceleration techniques.

Flux Reconstruction

Flux Reconstruction (FR) [21, 22] is a modification of Spectral Difference methods.

The fluxes are split into two components, a discretized flux and a correction flux. The

discretized flux is completely local, and is defined only by the interpolating polynomial

derived from the solution points. The correction flux is formed so that it will “lift” the

fluxes defined on the boundary to the common interface flux computed by a Riemann

Solver. The correction flux function will then propagate this movement inward into the

element. The combination of the divergence of the discretized flux and the divergence

of the correction flux is used to form a residual at the solution points of each element.

Depending on the choice of correction function, FR has have been shown to reduce to a

Discontinuous Galerkin Method or a Spectral Difference Method with an infinite number

of combinations with good characteristics.

Flux Correction

Flux Correction (FC) [23,24] is wholly dissimilar to all methods previously encountered.

The main premise of FC is that the global solution error is driven by the truncation error

of the method, and that by identifying the sources of the truncation error, modifications

can be made to an existing method to “upgrade” it to be higher-order. So far, this idea has

20

7

been used with a common second-order linear node-centered Galerkin method. By changing

the interface flux definition for the Riemann Solver and using higher-order approximations

for the solution gradients, the second-order method is upgraded to third-order for inviscid

terms and fourth-order for viscous terms. The changes can be formulated as a “correction”

to the interface flux definition, allowing easy insertion into an existing code. Because

the fundamental nature of the method has not changed, mature limiters and convergence

acceleration techniques are already available. Unlike many of the previous methods, the

order of accuracy of FC is fixed by the accuracy of the gradients and the relationship

between the truncation error and global error.

1.2 Purpose of Thesis

The purpose of this thesis is to evaluate the merits of the Flux Correction method

by comparing with second-order methods and other high-order methods. There are three

comparisons that can be done. The first is a mathematical validation using the Method

of Manufactured Solutions [25]. This assures us of the validity of the method and imple-

mentation. The second is experimental verification, where we compare numerically derived

results with well-known and established experimental data. This tells us that the method is

capable of reproducing real-world data and gives us more confidence in the methods ability

to predict the physical world. The third is a comparison against similar numerical meth-

ods in areas of convergence rates, time elapsed, stability, accuracy, and complexity. This

last comparison highlights strengths and weaknesses in the compared numerical methods,

offering possibilities where one might trump the other.

Flux Correction is not derived from any high-order parents, and thus has no obvious

method to compare against. The Flux Reconstruction method was chosen as a comparison,

as it recovers the both the DG and SD methods [26], which are the most actively researched

high-order methods right now. Figure 1.1 shows the relationships between the various

methods. FR is intuitive and lends itself to parallelization due to it’s discontinuous nature

[27]. It has well-established stability properties and is actively being researched. Because

of this, it was chosen as a basis for comparision with Flux Correction.

21

8

FE

CG DG

SDFR

FV

k-E
ENO

WENO
SV

FD

FC

Traditional
Methods

Fig. 1.1: Relationship graph for higher-order methods. The solid lines indicate a direct
descent, while dashed lines indicate an indirect descent. The boldness of a method indicates
it’s relative popularity.

The objective of this thesis is twofold: First, to establish the viability of Flux Cor-

rection as a high-order, unstructured numerical method for CFD. This is accomplished

by a comparision with Flux Reconstruction, an actively researched method at the time of

writing. Viability is determined through metrics such as accuracy, convergence rates, and

computation time. The second objective is to discover the effect of curved meshes on Flux

Correction, whether they are detrimental or helpful to the method.

1.3 Thesis Outline

The rest of this thesis is outlined as follows. Chapter 2 covers necessary background

topics, including the governing equations to be solved in this work, generation of curved

meshes, and the Method of Manufactured Solutions. Chapter 3 derives the Flux Correc-

tion scheme from a second-order linear Finite Volume Galerkin Method, and explains the

methods used in it’s solution. Chapter 4 details the formulation of the Flux Reconstruction

method, and briefly reviews it’s history. Chapter 5 describes the test cases used to evaluate

Flux Correction against Flux Reconstruction, as well as test the effects of mesh curvature.

Chapter 6 then concludes this work with thoughts on future work for Flux Correction.

22

9

Chapter 2

Preliminaries

This chapter covers miscellaneous topics necessary for the rest of this work. These

include a description of the governing equations to be solved, a description of the high-

order meshing methods used, and a description of the Method of Manufactured Solutions.

2.1 Governing Equations

The equations that govern fluid motion follow from considering Conservation of Mass,

Conservation of Momentum, and Conservation of Energy. This well-known result, known

as the Navier-Stokes equations, is shown here in tensor notation:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1a)

∂ρui
∂t

+
∂ρujui + Pδij

∂xj
+
∂σij
∂xj

+ ρgi = 0, (2.1b)

∂ρe

∂t
+
∂ρhuj
∂xj

− ∂σij
∂xj

ui −
∂qj
∂xj
− ρgjuj = 0. (2.1c)

We define P as the thermodynamic pressure, gi as the ith component of the body force, e

as the total energy (internal plus kinetic) per unit mass and h = e+ P
ρ as the enthalpy. qj

is the jth component of the heat flux vector. This can be related to temperature through

Fourier’s Law of Heat Conduction:

qj = −κTxj , (2.2)

where κ is the thermal conductivity, which in general is dependent on temperature.

The only assumption that has been made so far is that the fluid is a continuum, thus

neglecting the molecular nature of the fluid. For this work, we will also neglect gravity. This

is a good approximation for fluids with low densities and small vertical scales. Since this

work focuses on aerodynamic applications, our working fluid will be air, with little vertical

23

10

change. Next, we will assume the fluid is Newtonian. This assumes the stress in the fluid

is linearly proportional to the strain in the fluid, and determines the form of σij . Third, for

this thesis these equations will only be considered in two dimensions.

The equations as they have been given are not very convienent for numerical compu-

tation, and can be written as an advection-diffusion equation:

∂q

∂t
+∇ · Fi −∇ · Fv = S. (2.3)

The conserved variable vector q is given as:

q =



ρ

ρu

ρv

ρe


. (2.4)

The inviscid flux vector is Fi = 〈fi, gi〉, where

fi =



ρu

ρu2 + P

ρuv

ρuh


, gi =



ρv

ρuv

ρv2 + P

ρvh


, (2.5)

The viscous flux vector is Fv = 〈fv, gv〉, with

fv =



0

σxx

σxy

uσxx + vσxy − qx


, gv =



0

σyx

σyy

uσyx + vσyy − qy


, (2.6)

24

11

where the Newtonian stress tensor is written as

σxx = 2µux −
2

3
µ (ux + vy) , (2.7a)

σyy = 2µvy −
2

3
µ (ux + vy) , (2.7b)

σxy = σyx = µ (uy + vx) , (2.7c)

where ux indicates the partial derivative of u with respect to x, or ∂u
∂x .

2.2 High-Order Meshing

Meshing a 2D continuous domain has generally consisted of using linear or quadratic

quadrilaterals and triangles. The enhanced accuracy of higher-order methods means that

coarser meshes may be used to achieve the same accuracy. The coarser meshes could no

longer approximate the surface in a reasonable fashion, leading to a reduction in accuracy.

The fact that higher-order meshes are necessary for higher-order schemes has been shown

by various authors [2, 3].

In this work, we test Flux Correction using linear and cubic triangular unstructured

meshes. This section describes how the meshes used were generated.

Dey [28] suggests two routes that can be taken when generating high-order meshes. The

first approach involves generating a high-order surface tessellation from the exact surface

definition and then forming the volume mesh around the high-order surface tesselation.

This is referred to as the “direct approach.”

The second approach is to start with a linear volume mesh, with nodes located on

the exact surface definition. Surface faces are then curved in some fashion to approximate

the given surface. Curving the faces can be done using the original surface definition, or

using interpolating splines to approximate the surface. Dey calls this the “a posteriori

approach.” The advantage of this method is that generating the initial mesh can be done

using available and robust software. The process of curving the surface can lead to invalid

elements, where the mesh crosses over itself. Steps must then be taken to either split the

25

12

invalid element into valid ones, or to curve the invalid element so that it is no longer invalid.

This is the approach taken for this work. While many approaches to remove invalid elements

have been proposed, we follow the approach presented by Allen [29]. This approach was

originally formulated for moving meshes, but can be applied to grid generation.

First, the nodes on the moving surfaces must be identified. A moving surface is the

actual surface geometry of interest. For instance, a 3-element airfoil consists of 3 moving

surfaces. Several geometric and weighting factors are then defined for each node p not on a

moving surface:

0 ≤ αp,nsnc ≤ 1 (2.8a)

Sp,nsnc =
∣∣∣rP − rp,nsconnect(nc)

∣∣∣ (2.8b)

SpF =
∣∣∣rp − rpfarfield

∣∣∣ . (2.8c)

These are subject to the condition

nconnect∑
nc=1

αp,nsnc = 1 ns = 1...nsurfaces, nc = 1...nconnect. (2.9)

In equations (2.8c) and (2.9), rp is the global position vector of the current node, rp,nsconnect(nc)

is the position vector of the nc-th connection point on moving surface ns for node p. In

the following, rp refers to the initial position of point p, while rp(t) refers to the adjusted

position vector.

A distance function for each moving surface ns is defined for each point p as:

ψp,ns =

∑nconnect
nc=1 αp,nsnc Sp,nsnc

SpF +
∑nconnect

nc=1 αp,nsnc Sp,nsnc

ns = 1...nsurfaces. (2.10)

Allen suggests using nconnect = 2 for 2D, where the two connections on a moving surface

ns are the two points on the surface that are closest to the node p in question. Each moving

surface should affect the position of node p. This necessitates the use of a weighting function

26

13

to combine the effects of all the moving surfaces on point p. These are described as

Sp,ns =
nconnect∑
nc=1

αp,nsnc Sp,nsnc ns = 1...nsurfaces, (2.11)

Spmin = min
(
Sp,1, Sp,2, ..., Sp,nsurfaces

)
, (2.12)

Sp,nssurface =
Spmin
Sp,ns

ns = 1...nsurfaces, (2.13)

SpTotal =

nsurfaces∑
ns=1

(
Sp,nssurface

)ssc
, (2.14)

φp,ns =
Sp,nssurface

SPTotal
ns = 1...nsurface, (2.15)

where ssc is a scaling component and typically takes a value of 2. The previous equations

describe the translation component of the mesh movement scheme. This does not preserve

orthogonality in the moving mesh, and the procedure must also take into account the

rotation of the surface movement in order to preserve the orthogonality of the mesh. This

is possible as long as nconnect ≥ 2.

A translation vector is defined for each point p based off the translation vectors of its

connection points as follows:

∆rp,nsT =
nconnect∑
nc=1

αp,nsnc ∆rp,nsconnect(nc), (2.16)

where ∆rp,nsconnect(nc) is the displacement vector of connection point nc on surface ns, or

r(t)−r(0). A rotation vector, referenced from an arbitrary origin, can be defined for a node

27

14

p as:

∆rp,nsR = (Rp,ns − I)

(
rp −

nconnect∑
nc=1

αp,nsnc rp,nsconnect(nc)

)
, (2.17)

Rp,ns =

 cos θp,ns sin θp,ns

− sin θp,ns cos θp,ns

 , (2.18)

θp,ns =

nconnect∑
nc=1

αp,nsnc θp,nsconnect(nc), (2.19)

θp,nsconnect(nc) = arccos

(
rp,nsconnect(nc) · r

p,ns
connect(nc)(t)

‖rp,nsconnect(nc)‖‖r
p,ns
connect(nc)‖

)
, (2.20)

where I is the identity matrix. Once the rotation and displacement vectors have been

defined for a point, the total movement of a node p can be found by

rp(t) = rp +

nsurfaces∑
ns=1

φp,ns
(
∆rp,nsT (1− ψp,ns)st + ∆rp,nsR (1− ψp,ns)sr

)
, (2.21)

with st and sr being scaling components for the translation and rotation portions, respec-

tively. These control how far into the mesh the displacements are propogated.

While the scheme outlined above was originally developed for moving surface meshes, it

can be applied to mesh generation to prevent invalid elements in the a posterioir approach.

First, a linear mesh is formed using available software. Linear edges along the surface

geometry in question are made higher order by adding interior nodes at regular intervals

along the length of the edge. This defines the original position of the connection points,

rp,nsconnect(nc). The interior nodes are then “snapped” to the exact surface definition, which

becomes the new timestep rp,nsconnect(nc)(t). For consistency, interior nodes are added to all

edges in the mesh. The algorithm described above is then applied to all nodes (excepting

the surface nodes), linear and interior.

For cubic and higher meshes, nodes interior to the cells are also necessary. These

nodes are not moved according to the above scheme as this will lead to non-linearity inside

elements [30]. In order to place these correctly, we utilize the methodology illustrated by

28

15

Solin [31].

For triangles, the nodes interior to the element are first located as if the element

was a linear element and then nudged into the necessary position by the deformed edges.

Mathematically, this looks like:

xp = xpL + xpe, xp = 〈xp, yp〉 . (2.22)

The initial placing is done by mapping the element to a reference element, placing the

interior nodes, and then mapping them back to the physical element as if it were a linear

element. This comprises the first term on the RHS, xpL. The second term adds in the

non-linearity from the edges as

xpe =

3∑
j=1

xintej (ζ)λA(r)λB(r), (2.23a)

xintej (ζ) =
∆xej(ζ)

1
4 (1− ζ) (1 + ζ)

, ζ 6= ±1, (2.23b)

∆xej(ζ) = xej −
1

2
[1− ζ] xej(ζ = −1)− 1

2
[1 + ζ] xej(ζ = 1), (2.23c)

ζ = λB(r)− λA(r). (2.23d)

xintej is defined to be zero at ζ = ±1. The λ functions are the linear mapping functions

associated with the nodes of edge j. For example, the linear mapping to an equilateral

triangle is

x(r) =
1

6

(
−3r + 2−

√
3s
)

x1 +
1

6

(
3r + 2−

√
3s
)

x2 +
1

6

(
2 + 2

√
3s
)

x3. (2.24)

For edge 1 (comprised of nodes 1 and 2) of this particular mapping,

λA = 1
6

(
−3r + 2−

√
3s
)

and λB = 1
6

(
3r + 2−

√
3s
)
. Subtracting λB and λA maps the r

location of the interior point to the parameter ζ of the edge.

The function xej is the parametric equation describing edge j. In lieu of an exact

equation, a polynomial fit through the high-order edge of order h can be formed via a

29

16

Vandermonde matrix:



1 ζ0 ζ2
0 · · · ζh0

1 ζ1 ζ2
1 · · · ζh1

...
. . .

. . .
...

1 ζh ζ2
h · · · ζhh





c0

c1

c2

...

ch


=



x0

x1

...

xh


, (2.25)

where −1 ≤ ζ ≤ 1. The polynomial coefficients c can be found by solving the system given

in equation (2.25) and then used in xej .

2.3 Method of Manufactured Solutions

The Method of Manufactured Solutions (MMS), is a method of determining that the

implementation of a given algorithm is free of coding errors and gives the expected order

of accuracy. It was originally detailed by Roache [25]. The method consists of choosing

an exact solution and then substituting it into the differential equation to be solved. This

determines a source term that will force the solution to the chosen solution.

The algorithm will solve toward the exact solution, with some error. A grid refinement

study can then be used to determine the order of accuracy of the method.

In the case of a complex set of equations, such as the Navier-Stokes equations, the

exact solution must be carefully chosen so as to exercise all terms in the equation. The

solution must also be “difficult” enough that the algorithm cannot solve it exactly, while

not becoming unsolvable.

The chosen MMS solution for density in this work is shown here:

ρ = ρ0 + ρx sin
(αρxπx

L

)
+ ρy cos

(αρyπy
L

)
+ ρxy cos

(αρxyπxy
L2

)
. (2.26)

Here ρ0 is the freestream value, and ρ∗ and α∗ are arbitrarily chosen constants. Similar

solutions can be found for u, v, and P , and used as source terms in the conserved variables

for equation (2.3).

30

17

Chapter 3

Flux Correction

The goal of Flux Correction is to cancel the leading order error terms of an already

existing numerical method, thus ”upgrading” it to a higher order of accuracy. In order to

accomplish this, where the truncation error terms arise in a method must be understood.

In this work, we examine a common linear Galerkin node-centered method which is

traditionally second-order and “upgrade” it to be third-order accurate. The discretization

of the Galerkin method is well-known [32]. Since the Galerkin method itself is not the

focus of this work, it will not be detailed here. For the sake of completeness, it is given in

appendix A.

Before describing FC, a brief discussion of error terms is necessary to understand the

justification used in the development of the method. Following that, the method will be

demonstrated in 1D for understanding, leading then to the 2D formulation. This chapter

follows the methodology outlined by Katz, Sankaran, and Pincock [23, 24].

3.1 The Effect of Truncation Error on Solution Error

Truncation error arises from the discretization of a continuous differential equation.

Importantly, truncation error is distinct from solution error, which is defined as the differ-

ence between the true solution and the converged discretized solution. In the end, it is the

solution error that we are concerned about. As the mesh is refined, the solution error drops.

The rate at which the solution error drops leads to the notion of order of accuracy. The

order of accuracy of the truncation and solution error are not necessarily the same, but are

related.

31

18

To understand the effect truncation error has on the solution error, consider a general

conservation law:

qt +∇ · F = 0. (3.1)

q represents conserved variables, F is the flux. For linear F, the discretization of equa-

tion (3.1) at steady-state becomes

D
{
qh
}

= Bqb, (3.2)

where D is the discretization operator, and B incorporates the boundary conditions qb. The

discrete solution exactly satisfies this algebraic system of equations. If the exact solution q

is substituted into the left-hand-side of equation (3.2), an error term must be added to the

right-hand-side:

D {q} = Bqb + Et, (3.3)

where Et is the truncation error.

The solution error Es is, by definition, the exact solution minus the discrete solution,

Es = q− qh. Rearranging equations (3.2) and (3.3) and substituting into the solution error

definition yields

D {Es} = Et. (3.4)

From this we find that the truncation error and the solution error are related through the

discretization operator. This can be viewed as the truncation error driving the solution

error. Unfortunately, there doesn’t appear to be anyway to prove the order of the solution

error from the truncation error. Numerical observations have shown that the order of the

solution error is never lower than the order of the truncation error.

32

19

3.2 1D Flux-Correction

We wish to understand the origins of the errors in the Galerkin version of the hyperbolic

equation

qt + fx = S(x). (3.5)

First, using the 1D discretization in figure 3.1 we can define the following:

∆xi =
1

2

(
∆xi−1/2 + ∆xi+1/2

)
, ∆xi+1/2 = xi+1 − xi. (3.6)

The discretization of this equation in a Galerkin fashion leads to a discretized flux derivative

at node i (shown in figure 3.1), shown here:

fhx,i =
1

∆xi

(
F hi+1/2 − F

h
i−1/2

)
. (3.7)

The superscript h represents a discretized value, and not an exact value. The source term

discretization is given by

Shi =
2

3
Si +

1

6∆xi

(
Si−1∆xi−1/2 + Si+1∆xi+1/2

)
. (3.8)

This is the point where the traditional Galerkin and the Flux Correction methods diverge.

We will cover the traditional first to understand where the truncation error comes from,

followed by the Flux Correction method.

ii− 1 i+ 1

i− 1/2 i+ 1/2

Fig. 3.1: Discretization used in the derivation of the Linear Galerkin Method

33

20

3.2.1 Traditional Galerkin

In order to proceed, we need to find a useful way to compute the fluxes at the halfway

points, Fi−1/2 and Fi+1/2. In the traditional method, this is done using

F hi+1/2 =
1

2

(
fhi + fhi+1

)
−Dh

i+1/2, (3.9a)

Dh
i+1/2 =

1

2

∣∣∣Ah (qRi+1/2, q
L
i+1/2

)∣∣∣ [qRi+1/2 − q
L
i+1/2

]
, (3.9b)

where Ah = ∂f
∂q and is a function of the reconstructed state of qh at the midpoint. The dis-

sipation term, shown in equation (3.9b), is added to enforce upwinding, making the method

numerically stable. Substituting equation (3.9) into equation (3.7), the flux derivative at

node i becomes

fhx,i =
1

2∆xi

(
fhi+1 − fhi−1

)
− 1

2∆xi

(
Dh
i+1/2 −D

h
i−1/2

)
. (3.10)

The method is now in a form that is convenient to determining the truncation error. The

two terms of the right-hand-side of equation (3.10) will be addressed separately, starting

with the flux term. The source terms will follow.

Substituting a taylor series, centered on node i for the exact flux f :

1

2∆xi

(
fhi+1 − fhi−1

)
= fx,i +

1

2

(
∆xi+1/2 −∆xi−1/2

)
f2x,i

+
1

12∆xi

(
∆x3

i+1/2 + ∆x3
i−1/2

)
f3x,i

+O
(
h3
)
.

(3.11)

Equation (3.11) is first-order accurate for irregular grids and second-order for regular grids

(which cancels the second term on the RHS). We now treat the numerical dissipation term

in equation (3.10). qL and qR are the estimated values of q at xi+1/2 approaching from the

left and right sides, respectively. These can be estimated in a linear fashion by extrapolating

them using a truncated taylor series expansion, shown here:

qLi+1/2 = qhi +
1

2
∆xi+1/2q

h
x,i, qRi+1/2 = qhi+1 −

1

2
∆xi+1/2q

h
x,i+1. (3.12)

34

21

The gradient can be computed any convenient manner. For now, let us say that the gradient

qhx,i approximates the true gradient with an error of order p.

qhx,i = qx,i +O(hp). (3.13)

Substituting in the definition of the dissipation from equation (3.9b), the exact solution

of q, and inserting the arbitrarily accurate derivative from equation (3.13), we find the

truncation error for the dissipation terms to be:

1

2∆xi

(
Di+1/2 −Di−1/2

)
= − 1

48∆xi

(
∆x3

i+1/2

∣∣Ai+1/2

∣∣−∆x3
i−1/2

∣∣Ai−1/2

∣∣) q3x,i

+O
(
h3
)

+O (hp) .

(3.14)

The terms in the RHS are, in order, second-order, third-order, and p-order. If p is equal to

1, then the dissipation terms are first order. If p ≥ 2, their limiting influence is removed.

Expanding the source term in equation (3.8) through a taylor series expansion, we find that

Shi = Si +
1

3

(
∆xi+1/2 −∆xi−1/2

)
Sx,i

+
1

12∆xi

(
∆x3

i+1/2 + ∆x3
i−1/2

)
S2x,i

+O
(
h3
)
,

(3.15)

which appear to be first, second, and third-order terms, respectively. Substituting our

expanded derivatives (equations (3.11), (3.14), and (3.15)) into the standard hyperbolic

equation of (3.5), we can obtain the total truncation error as:

ε =
(
∆xi+1/2 −∆xi−1/2

)(1

2
F2x,i −

1

3
Sx,i

)
− 1

48∆xi

(
∆x3

i+1/2

∣∣Ai+1/2

∣∣−∆x3
i−1/2

∣∣Ai−1/2

∣∣) q3x,i

+O
(
h3
)

+O (hp) .

(3.16)

Note that in order to reach this result we used the fact that F3x,i = S2x,i exactly at steady-

state. This causes the O
(
h2
)

term to cancel.

From equation (3.16) we can see that the truncation error comes from two sources.

35

22

The first, contained in the flux-source term on the RHS, is O
(
h1
)
, and comes from the

averaging approximation of the midpoint flux of equation (3.9a). The second source comes

from the gradient approximation, which is of order p. For the traditional Galerkin method,

this is O
(
h1
)
.

3.2.2 Flux-Corrected Galerkin

In the previous section it was discovered that the source of the truncation error in the

traditional Galerkin method originates from two main sources: The reconstructed states

qR, qL, and the central difference approximation of the flux derivative.

Starting with equation (3.7), we again tackle the problem of determining the flux at

the halfway locations between nodes. Instead of using the traditional definition given in

equation (3.9a), we use the following definition:

F hi+1/2 =
1

2

(
FLi+1/2 + FRi+1/2

)
−Dh

i+1/2, (3.17)

where Dh
i+1/2 is the same as equation (3.9b). Notice here that we are now reconstructing

the flux to the midway point, and is done in a similar fashion as the solution variable q:

FLi+1/2 = fhi +
1

2
∆xi+1/2f

h
x,i, FRi+1/2 = fhi+1 −

1

2
∆xi+1/2f

h
x,i+1. (3.18)

The truncation error of equation (3.18) is dependent on the order of the gradient approxi-

mation, and not on the actual approximation.

Since the fluxes are now the same form as the conserved variables, the only step is to

determine an appropriate method of estimating the gradient at the xi+1/2 and xi−1/2. This

needs to be done for the solution values and for the fluxes, separately. In 1D a simple and

compact second-order method can be derived from taylor series as:

qhx,i =
∆x2

i−1/2q
h
i+1 −∆x2

i+1/2q
h
i−1 +

(
∆x2

i+1/2 −∆x2
i−1/2

)
qhi

∆xi+1/2∆xi−1/2

(
∆xi+1/2 + ∆xi−1/2

) . (3.19)

36

23

The major advantage to the choice of flux definition in equation (3.17) is that it can be

rewritten in terms of the traditional flux definition from equation (3.9a), and defined as a

correction to the traditional flux.

F hi+1/2 =
1

2

(
fhi + fhi+1

)
−Dh

i+1/2 −
1

4
∆xi+1/2

(
fhx,i+1 − fhx,i

)
, (3.20a)

F hi+1/2 =F hi+1/2,linear − Chi+1/2. (3.20b)

This “corrected” flux can be used in equation (3.7). The improved gradient qhx,i must be

used in F hi+1/2,linear.

A source term can also be derived following this same methodology. With the previous

changes, the truncation error of the flux terms becomes:

1

∆xi

[
1

2

(
FLi+1/2 + FRi+1/2

)
− 1

2

(
FLi−1/2 + FRi−1/2

)]
= Fx,i −

1

24∆xi

(
∆x3

i+1/2 + ∆x3
i−1/2

)
F3x,i +O

(
h3
)

+O (hp) .

(3.21)

The order of this approximation is (starting with the second term on the RHS) 2,3,p. Using

the second order gradient of the flux and solution variables, the flux terms are brought up

to an order of 2.

3.3 2D Flux Correction

The two dimensional formulation can be determined in a similar fashion as the 1D case.

The hyperbolic equation in 2D is given as:

qt +∇ · F = 0. (3.22)

A triangulation around node 0 is shown in figure 3.2. We now define the divergence of a

vector-valued function θ at node 0 as:

∇h · θh =
1

V0

∑
i

1

2

(
θhi + θh0

)
· n0iS0i =

1

V0

∑
i

1

2

(
θhi − θh0

)
, (3.23)

37

24

0

i

i+ 1

i− 1

Fig. 3.2: Node-centered stencil on a two-dimensional unstructured triangular grid

where n0i is the area-weighted normal of the median-dual face located between nodes 0 and

i. These faces are shown as the dashed lines. They connect the centroids of the triangular

elements with the midpoint of the lines bounding the triangle. These can be approximated

by connecting the centroids of the triangular elements instead.

Applying the vector divergence from equation (3.23) to (3.22) results in a flux term

similar in form to the 1D case:

∇h · Fh =
1

V0

∑
i

F h0iS0i, (3.24)

where F h0i is a numerical flux between nodes 0 and i. This is our starting point for both the

traditional and flux correction methods.

The traditional method approximates F h0i as:

F h0i =
1

2

(
fh0 + fhi

)
−Dh

0i (3.25a)

Dh
0i =

1

2

∣∣∣Ah0i∣∣∣ (qR0i − qL0i) , (3.25b)

where A = ∂f
∂q is the directed flux Jacobian, qR0i and qL0i are the solution variables recon-

structed to the midpoint of the edges connecting nodes 0 and i as follows:

qL0i = qh0 +
1

2
∆rT0i∇hqh0 , qR0i = qhi −

1

2
∆rT0i∇hqhi . (3.26)

38

25

There are many methods to approximate the gradient of q, and it can be shown that the

truncation error of the complete method depends on the accuracy of the gradient approxi-

mation. The truncation error also depends on the form of the approximation for F h0i. Flux

Correction uses a higher order gradient approximation and changes the definition of the

flux to

F h0i =
1

2

(
FL0i + FR0i

)
−Dh

0i, (3.27)

which uses a reconstructed flux instead of an average flux:

FL0i = fh0 +
1

2
∆rT0i∇hfh0 , FR0i = fhi −

1

2
∆rT0i∇hfhi . (3.28)

This method can be cast into a “correction” of the linear flux, similiar to the 1D case, and

used in equation (3.24). The correction is given as:

F hi+1/2 =
1

2

(
fhi + fhi+1

)
−Dh

i+1/2 −
1

4
∆xi+1/2

(
fhx,i+1 − fhx,i

)
F hi+1/2 = Fi+1/2,linear − Chi+1/2.

(3.29)

3.4 2D Gradient Approximation

The changes that FC makes to the linear Galerkin method now involves a high-order

computation of the gradient of the solution variable q and a high-order computation of the

gradient of the flux f . Katz and Sankaran employed a quadratic least-squares methodology

in their original paper [23]. However, least-squares mathods have been shown to be sensitive

to high aspect ratios and curvature of a mesh. This indicates that they will give erroneous

gradients in a practical viscous mesh needed to resolve boundary layers.

Katz and Pincock then developed a new gradient method using element mapping meth-

ods used in Finite Element and Spectral Volume methods [24]. By estimating gradients in

this manner, gradient stencils can be kept compact, promoting stability and solution speed.

Unfortunately, it brings with it the need for high-order elements on the boundary. Despite

this, this is the gradient methodology that will be used in the work. It should be noted

that Flux Correction only specifies the need for high-order gradients, not how they are to

39

26

be found.

The two previous works by Katz have only dealt with straight boundaries and elements.

This work will investigate the effects of curved elements on the Flux Correction method.

Element mappings for the gradient reconstruction are formed by subdividing each tri-

angle in the mesh into “sub-triangles.” These sub-triangles are formed by placing nodes at

equally spaced intervals inside the parent triangle, and are illustrated in figure 3.3. From

here, a lagrange polynomial is fitted over the parent element, using the extra nodes in the

parent element as the interpolation points. The refined mesh with the extra nodes is used in

the solution, while the coarse parent mesh is used to provide gradients at the nodes through

the lagrange polynomials, as follows:

∂q

∂x

h
∣∣∣∣∣
i

=
∑
j

qhj
∂lj
∂x

∣∣∣∣
i

,
∂q

∂y

h
∣∣∣∣∣
i

=
∑
j

qhj
∂lj
∂y

∣∣∣∣
i

, (3.30)

where lj is the lagrange polynomial associated with node j in the parent element, and ∂q
∂x

h
∣∣∣
i

is the gradients computed at node i in the element. If the lagrange polynomials are given

in a standard reference element, then mappings can be used to find the x and y derivatives

as:

∂lj
∂x

∣∣∣∣
i

=
1

Ji

(
∂lj
∂r

∂y

∂s
− ∂lj
∂s

∂y

∂r

)
i

,
∂lj
∂y

∣∣∣∣
i

=
1

Ji

(
−∂lj
∂r

∂x

∂s
+
∂lj
∂s

∂x

∂r

)
. (3.31)

Since the Galerkin method is a continuous method, neighboring triangles will have multiple

estimates for the gradients at edge and corner nodes. To make the method consistent, the

(a) Quadratic element (b) Cubic element

Fig. 3.3: Parent triangles (·) and subtriangles (◦)

40

27

multiple values at nodes are “Jacobian-Averaged:”

∂qh

∂x

∣∣∣∣
i

=

∑
k∈i Jkq

h
x,k∑

k∈i Jk
,

∂qh

∂y

∣∣∣∣
i

=

∑
k∈i Jkq

h
y,k∑

k∈i Jk
, (3.32)

where k is the various approximations to the gradient at node i. For linear elements, this

reduces to the Green-Gauss procedure.

3.5 Viscous Terms Consideration

Quadratic gradients lead the inviscid terms to be globally third-order, but viscous terms

stay second-order. Pincock [24] discovered if cubic gradients are used, then the viscous terms

jump to fourth-order. The cubic gradients can cause the inviscid terms to become unstable

on the boundary, however. This was resolved by using quadratic gradients on the boundary

nodes for the inviscid terms, while using cubic gradients for the inviscid terms on the interior

nodes and for the viscous terms throughout the domain. To form a quadratic gradient on a

cubic triangle, overlapping quadratic triangles are extracted from the cubic triangle. These

are shown in figure 3.4.

Viscous terms require special treatment for them to be stable and accurate. Positivity

and stencil compactness have been shown to be necessary in any viscous discretization [33].

Pincock investigated the stability of the viscous terms in the method and found that stability

could be achieved in using the same methodology as the inviscid terms, without any Jacobian

averaging.

With no Jacobian-averaging, stencil compactness is preserved. Similar to the inviscid

flux, the viscous flux is:

F v,h0i =
1

2

(
F v,L0i + F v,R0i

)
, (3.33)

with left and right corrected fluxes,

F v,L0i = fv,h0 +
1

2
∆rT0i∇hf

v,h
0 , F v,R0i = fv,h0 − 1

2
∆rT0i∇hf

v,h
i . (3.34)

By using the corrected fluxes across median-dual interfaces, the viscous terms are treated

41

28

1 4

10

6

32

5

8 9

7

5 7

10

6

98

1 3

8

2

65

2 4

9

3

76

Fig. 3.4: Decomposition of a cubic element into three quadratic elements

in a similiar manner to the inviscid terms, which is necessary to retain the accuracy of the

method.

3.5.1 Source Terms

When present, source terms must also be discretized in a correct manner. This can

include MMS terms, unsteady time terms, or turbulent production/destruction terms. The

linear Galerkin discretization for source terms in given as:

Sh0 =
∑
i

1

2
(S0 + Si)V0i (3.35a)

V0i =
1

4
∆r0i ·A0i, (3.35b)

where ∆r0i is the position vector from node 0 to node i, and A0i is the median dual face

area vector associated with the edge connecting node 0 and node i. This discretization can

be shown to be second-order for irregular grids and third-order for regular grids. In order

to be consistent with the FC method, equation (3.35) is replaced with a FC approximation,

42

29

Sh0 =
∑
i

1

2

(
SL + SR

)
0i
V0i, (3.36a)

SL0i = S0 −
1

2
∆rT0i∇hS0 −

1

8
∆rT0i∆

h2S0∆r0i, (3.36b)

SR0i = Si −
1

2
∆rT0i∇hSi −

1

8
∆rT0i∆

h2Si∆r0i. (3.36c)

The discrete source term gradients must be computed as:

∇hS = ∇S +O (hq) ∇h2S = ∇2S +O
(
hq−1

)
. (3.37)

This discretization leads to solution error of O
(
h3
)

on regular and irregular grids. For the

second derivative, the derivative is taken of the derivative local in in each element. These

are the Jacobian-averaged to reconcile the multiple approximations using equation (3.32).

3.6 Unsteady Time Terms

Unsteady time terms are treated using a k-step backward difference formula (BDF),

which in general assumes the following form:

∂qh

∂t
=

1

∆t

(
γ1q

n+1 +
1−k∑
i=0

γiq
n+i

)
, (3.38)

where γi depend on the order of the time derivative, and ∆t is the time step. The iteration

in physical time is defined as n.

Pincock studied two BDF formulations, BDF2 and BDF3. BDF2 is a second-order

method and BDF3 is third-order. While third-order temporal accuracy would be more de-

sirable, it quickly became unstable, and thus will not be used for this work. The coefficients

for BDF2 are: γ1 = 1/2, γ0 = −2, γ−1 = −1/2.

3.7 Solution Method

Because FC is based on finite volume methodology, a plethora of mature solution

43

30

techniques already exist. For this work, we will use an explicit Runge-Kutta psuedo-time

approach with implicit residual smoothing, adaptive pseudo-time stepping, and multigrid-

ding. These methods work well for low-Reynolds number cases and in the absence of extreme

mesh anistrophy. To actually solve these equations, A mass-lumped pseudo-time derivative

may be added to the discrete equations:

V
∂q

∂τ
+R(q) = 0, (3.39)

where τ is the pseudo-time variable. R
(
qh
)

is the unsteady discrete residual

R (q) =
∑
i

F h0i −
∑
i

F v,h0i − S
h(q) . (3.40)

This pseudo-time equation is treated with an explicit ns-stage Runge-Kutta scheme of

Jameson [34], which will hereafter be referred to as J-RK. This splits the pseudo-time

residual into stage updates.

qk+1,0 = qk,

qk+1,m = qk + ∆qk+1,m,m = 1, . . . , ns,

qk+1 = qk+1,ns ,

(3.41)

where k is the pseudo-time counter, m is the stage counter, and ∆qk+1,m is the mth stage

update. By treating the fluxes explicitly and the physical time source terms implicitly in

pseudo-time, the update equation becomes:

(aτ + at) ∆qk+1,m − at∆qk+1,m−1 +R
(
qk+1,m−1

)
= 0,

aτ =
V

αm∆τ
, at =

Vγ1
∆t

,
(3.42)

where αm is the RK coefficient for stage m. Here, the left-hand-side has been mass-lumped

for convenience in computing the update in pseudo-time. The right-hand-side retains the

consistent source discretization which is satisfied at steady-state. Equation (3.42) is used

44

31

to determine the stage update for equation (3.41). Before updates are applied, they are

smoothed with an implicit residual smoothing operation [35].

3.8 Multigrid

The mesh refining procedure shown in figures 3.3 and 3.4 gives a convenient agglomer-

ation to be used in a multigrid solver. The multigrid used in this work is the standard Full

Approximation Storage (FAS) algorithm of Brandt [36]. Starting from cubic elements, the

mesh is coarsened to quadratic elements, then from there to linear elements. Restriction

and prolongation operations are performed by interpolating solutions, residuals, and correc-

tions using the available lagrange interpolating polynomials over each element. Using these

available interpolations allows for more accurate transfers then conventional averaging or

injection procedures. Multigrid forcing terms are added on coarse levels in the standard

fashion. This methodology was observed to provide good convergence acceleration for all

test cases.

3.9 Boundary Conditions

Boundary conditions for this method are implemented using a “selection matrix,” which

operates on the discretized equations of motion to specify the discrete residual for boundary

nodes. This approach was originally proposed by Allmaras [37], and the method shown here

is essentially a generalization of the one proposed by Allmaras and used by Folkner [38].

To incorporate the boundary conditions, we multiply equation (3.42) by a selection

matrix L, which selects combinations of the interior equations. This is then augmented

with the additional conditions, denoted here as Rb.

L
[
(aτ + at) ∆qk+1,m − at∆qk+1,m−1 +R

(
qk+1,m−1

)]
+Rb

(
qk+1,m
b , qk+1,m−1

)
= 0. (3.43)

45

32

Note that the boundary node is evaluated implicitly at stage m. The additional Rb condi-

tions can be linearized by:

Rb

(
qk+1,m
b , qk+1,m−1

)
≈ Rb

(
qk+1,m−1
b , qk+1,m−1

)
+
∂Rb
∂qb

∆qk+1,m− ∂Rb
∂qb

∆qk+1,m−1. (3.44)

Substituting this into (3.43), an expression is obtained which may be solved for the mth

stage update at the boundaries:

[
L (aτ + at) +

∂Rb
∂qb

]
∆qk+1,m −

(
atL+

∂Rb
∂qb

)
∆qk+1,m−1

+LR
(
qk+1,m−1

)
+Rb

(
qk+1,m−1
b , qk+1,m−1

)
= 0.

(3.45)

Note that, to solve this for ∆qk+1,m, the expression in the brackets must be inverted. In two

dimensions, this is a 4x4 matrix, and is only required at boundary nodes. Once the updates

are computed, these are included in the implicit residual smoothing operation described

earlier. In this work, we use inviscid and viscous walls, inflow and outflow conditions, and

dirichlet conditions. The selection matrices and Rb for these conditions can be found in

Folkner’s thesis [38].

46

33

Chapter 4

Flux Reconstruction

Flux Reconstruction starts by combining the inviscid and viscous term of equation

(2.3) into a single flux term, as:

∂q

∂t
+∇ · F (q,∇q) = 0. (4.1)

The inviscid fluxes are a function of q and the viscous fluxes are a function of q and ∇q.

Equation (4.1) can be rewritten as a system of equations:

∂q

∂t
+∇ · F (q,b) = 0, (4.2a)

b−∇q = 0. (4.2b)

The solution to this system of equations is contained inside domain Ω which is bounded

by boundary Γ. The solution domain Ω is discretized into triangular elements, where the

region of a single element k is denoted by ΩD
k , with the element boundary denoted by ΓDk .

The solution q inside an element is also discretized into solution qD and in general is not

continuous across element boundaries.

In order to facilitate implementation, the solution is mapped to a reference equilateral

triangle in (r, s) with vertices
(
−1,− 1√

3

)
,
(

1,− 1√
3

)
,
(

0, 2√
3

)
. This triangle is shown in

figure 4.1.

With this mapping, the solution variables and the fluxes can be transformed to the

reference space with the following equations:

q̂ = Jq, J = xrys − xsyr, (4.3a)

F̂ =
〈
f̂ , ĝ
〉

= 〈ysf − xsg , −yrf + xrg〉 . (4.3b)

47

34

(
−1, −1√

3

) (
1, −1√

3

)

(
0, 2√

3

)

r

s

Fig. 4.1: Reference triangle used in this work

Utilizing the discretization and the reference space transformation, equation (4.2) becomes

q̂Dt + ∇̂ · F̂D = 0, (4.4a)

b̂D − ∇̂q̂D = 0, (4.4b)

where ∇̂ is the gradient operator in the reference space.

4.1 Procedure

A general overview of Flux Reconstruction (FR) in two dimensions is given here. We

follow the basic procedure given in the works of Hyunh, Jameson, and Williams [21,22,39,

40].

The approximate solution in reference space is defined with a two-dimensional poly-

nomial of degree p. The polynomial is formed from Nsp = 1
2(p+ 1)(p+ 2) solution points,

which are placed within the triangle. This solution polynomial is given as:

q̂D =

Nsp∑
i=1

q̂Di li (r) . (4.5)

Each polynomial li is defined to be 1 at node i and 0 at all other nodes, in the lagrange

fashion. The interpolation field described in equation (4.5) is also used to interpolate

derivatives and fluxes.

48

35

Equation (4.4b) is solved first. This gives the derivatives of q to be used in the viscous

fluxes. To accomplish this, common “flux points” are defined along edges separating two

adjacent cells. The number of required flux points along an edge is Nfp = p + 1. This

number is chosen so that the order of the interpolating polynomial along the edge will

match the order of the interior 2D polynomial. Adjacent cells are required to have flux

points at the same physical location on the edge. In the following description, quantities

on flux points will be denoted with the subscript f, j. f represents the face, and j the flux

point on that face. For triangles, f ranges from 1 to 3, and j from 1 to Nfp.

Using the interior polynomial, the solution is interpolated to the flux points along the

edges and then transformed to physical space using equation (4.3a). Each flux point now

has two solutions (qL, qR) at the flux points. An “interface” value (qI) is then computed

using the left and right states at that flux point. This interface value is used to make

the solution continuous in a weak manner across element boundaries. Actually computing

the interface value can be done in many fashions, including Central Flux (CF) [41], Local

Discontinuous Galerkin (LDG) [15], Compact Discontinuous Galerkin (CDG) [42], Internal

Penalty (IP) [43], Bassi Rebay 1 (BR1) [44], or Bassi Rebay 2 (BR2) [45]. The interface

value is then transformed back to the reference space for each cell.

The derivatives of q̂ are then split into two parts: a discontinuous derivative that is

local to the cell, and a correction that involves the interface values.

b̂D = ∇̂q̂D + ∇̂q̂C . (4.6)

The correction value q̂C at the flux points is required to be

q̂Cf,j = q̂If,j − q̂Df,j . (4.7)

The discontinuous derivative is easily computed from (4.5) by taking the derivative of the

lagrange polynomial. The correction derivative is not as straight-forward, and the handling

49

36

of it is crucial to the method. It is defined as follows:

∇̂q̂C (r) =
3∑

f=1

Nfp∑
j=1

q̂Cf,j ψf,j(r) n̂f,j . (4.8)

The function ψf,j (r) is a ”lifting operator”, which moves the discontinuous solution at flux

point f, j to the interface value, and propogates that movement into the interior of the

element. Putting it all together, the equation to solve for b at a solution point i becomes

b̂Di =

Nsp∑
m=1

q̂Dm ∇̂lm (ri) +
3∑

f=1

Nfp∑
j=1

q̂Cf,j ψf,j(ri) n̂f,j . (4.9)

In the next stage, the fluxes are computed in a similiar manner. The interpolation from

(4.5) is used to define the discontinuous flux for each component of the flux in the reference

space. The solution at the flux points is used to compute the fluxes. This gives two values

at each flux point. These two flux values are utilized to form a common interface flux.

The flux, as currently defined, includes both advective and diffusive components. For

fluids problems, these are generally known as the inviscid and viscous terms, respectively.

Each requires a different method to determine the common interface flux. The inviscid

terms can be found using a Riemann Solver, for example, in a manner following Roe [46] or

Rusanov. [47] The viscous terms can be computed using any of CF, LDG, CDG, IP, RB1,

or RB2 mentioned previously.

Once the interface fluxes for the inviscid and viscous terms have been found, they

are added together and then transformed back to the reference space for each neighboring

element. At this point, the flux is separated into two separate components, a discontinous

and a correction component. The divergence of the flux can then be found as:

∇̂ · F̂D = ∇̂ · F̂D + ∇̂ · F̂C , (4.10)

where

F̂C
f,j = F̂I

f,j − F̂D
f,j . (4.11)

50

37

The correction flux is constructed using correction vector functions hf,j (r). These are two

dimensional polynomials of order p. The correction functions are required to satisfy the

following condition:

hf,j (rm,n) · n̂m,n =


1 if f = m and j = n

0 if f 6= m and j 6= n

. (4.12)

The correction flux at solution point i is then determined by

F̂C (ri) =
3∑

f=1

Nfp∑
j=1

[(
F̂I
f,j − F̂D

f,j

)
· n̂f,j

]
hf,j (ri) =

3∑
f=1

Nfp∑
j=1

∆f,jhf.j (ri) . (4.13)

Once this is done, the flux derivatives can be computed at each solution point. The

discontinuous term is computed by taking the divergence of the lagrange interpolating

polynomial. The correction term can be found by finding the divergence of the vector

correction function. To simplify notation, this will be notated by

φf,j(r) = ∇̂ · hf,j(r). (4.14)

Thus the completed equation at solution point i becomes

∂q̂i
∂t

= −
Nsp∑
k=1

f̂Dk
∂lk
∂r

(ri)−
Nsp∑
k=1

ĝDk
∂lk
∂s

(ri)−
3∑

f=1

Nfp∑
j=1

∆f,jφf,j (r̂i) (4.15)

This residual equation can then be integrated in time using any number of integration

schemes. This aspect will be considered later on. In summary, the nature of a FR scheme

depends on

1. The location of the solution points. (Section 4.2)

2. The location of the flux points. (Section 4.2)

3. The methodology for calculating the interface values qIf,j . (Section 4.3)

51

38

4. The methodology for calculating the interface flux FI
f,j . (Section 4.3)

5. The form of the solution correction field ψf,j . (Section 4.4)

6. The form of the divergence φf,j of the correction functions hf,j . (Section 4.4)

Each of these points will be addressed in the following sections.

4.2 Solution and Flux Point Locations

The location of the solution points is critical in minimizing aliasing errors. Previous

analysis of FR in one dimension has shown that the locating the solution and flux points

at good integration points is necessary to minimize aliasing errors [48]. Castonguay, et al.

have shown that a stable choice for flux point locations is the 1D Gauss integration points,

and a stable choice for the solution points locations is the numerical quadrature points given

by Taylor [49].

4.3 Interface Values

As mentioned previously, there are three interface values that need to be formed. The

first is a solution qI interface value. This is used in the determination of b or ∇q. Since

our implementation only handles inviscid terms, the derivative of the solution values is not

necessary, and isn’t used. The second is the inviscid flux interface value FI
inv. As mentioned

previously, this can be computed using any Riemann Solver. In this work, the Approximate

Riemann Solver of Roe is used. The third is the viscous flux interface value FI
vis. These

can be computed using any of the methods previously mentioned. Again, in this work, the

viscous terms are not included.

4.4 Correction Functions

Vincent, Castonguay, and Jameson have developed a form of the correction field titled

as Vincent-Castonguay-Jameson (VCJ) Schemes [40]. These have been proven to be stable

for linear problems, and have been shown to be stable for non-linear problems as well. For

52

39

simplicity, both the solution correction field ψf,j and the flux correction field φf,j are taken

as the same, although there is nothing enforcing this.

The correction fields φf,j are assumed to take the form

φf,j =

Nsp∑
k=1

σkψk(r), (4.16)

where ψk is the 2D orthonormal Dubiner basis given by

ψk(r) =
2

30.25
P(0,0)
v (a)P(2v+1,0)

w (b)(1− b)v, (4.17)

where v and w are given implicitly by the following:

k = w + v(p+ 1)− v

2
(v − 1) + 1, (v, w) ≥ 0, v + w ≤ p. (4.18)

P(α,β)
n is the normalized n-th order Jacobi polynomial, and a and b are given by

a =
3r

2−
√

3s
, b =

1

3

(
2
√

3s− 1
)
. (4.19)

Finally, correction field coefficients σk can be found by solving

c

Nsp∑
k=1

σk

p+1∑
m=1

(
p

m− 1

)(
D(m,p)ψi

)(
D(m,p)ψk

)
= −σi +

∫
Γ

(hf,j · n̂)ψidΓ, for 1 ≤ i ≤ Nsp.

(4.20)

This methodology is characterized by the parameter c. Schemes of varying types and

properties can be found solely by changing the value of c. For instance, when c = 0, the

collocation-based DG Method is recovered in 1D [26]. Through several theoretical studies

and numerical experiments, values of c that provide better accuracy or timestepping or

stability have been found. The value of c is dependent on the time integration method and

the order p [21, 39,40,48].

53

40

4.5 Time Integration and values of c

The time integration of the residual equation in equation (4.15) can be done in any

number of ways. Castonguay, Vincent, Jameson, and Williams tested several methods

of time integration, while varying the value of c, searching for maximum explicit time-step

limits. They discovered that the 4th order, 5-stage, 2N-storage RK scheme of Carpenter [50]

yielded the highest maximum time-step limit. This will hereafter be referred to as C-RK.

For this integration method, four special values of c have been discovered. These are listed

in table 4.1.

cdg is the value of c that has been shown to recover a DG scheme in 1D. This value

of c has also been shown to be the most accurate of all values of c. csd has been shown to

recover a SD method in 1D. chu recovers a scheme shown by Huynh [21] to be particularly

stable. c+ is the value that yields the maximum possible explicit time-step. For this work,

we will focus mainly on cdg and c+ for comparisions to FC.

For steady-state problems, we can also integrate in time using the RK method in-

troduced by Jameson [34]. This method splits the diffusive and convective terms of the

equations and treats them separately. This is results in a larger stability envelope, but

ruins the temporal accuracy. Thus, this method is only suitable for steady-state problems,

where time accuracy is not an issue. This method will be known as J-RK, and is explained

in more detail in section 3.7.

A p-multigrid was implemented, but was not found to help very much. This mirrors

the results found by Nastase [51], in which p-multigrid was found to be not very effective

without h-multigridding.

cdg 0
csd 6.18e− 3
chu 1.39e− 2
c+ 4.30e− 2

Table 4.1: The four special values of c for C-RK with p = 2

54

41

Chapter 5

Numerical Results

In order to compare Flux Correction with Flux Reconstruction, a code was written for

each method. The FR implementation does not include viscous terms and will not attempt

to include these into the comparison. Here we present results for two comparision tests:

The first is a simple accuracy study using MMS, the second is a traveling isentropic vortex

study to evaluate the numerical dissipation of FC and FR. Timing results for the MMS test

are also presented. The effect of curved elements on Flux Correction is then studied, using

an unsteady, vicous, circular cylinder case.

5.1 Method of Manufactured Solutions

The Method of Manufactured Solutions is used to ensure that the implementations are

free from coding mistakes and that the expected order of accuracy is recovered. This is

covered in more detail in section 2.3.

This solution is used with grid refinement studies to determine the order of accuracy of

the methods. The governing equations were solved over a unit square domain. The meshes

used are characterized by the number of boundary edges along one side of the square.

Meshes of 4, 8, 16, 32, and 64 triangles on a side were used. The nodes of the mesh were

then perturbed randomly to introduce non-uniformity into the mesh and prevent possible

supraconvergence of the solution error. Figure 5.1(a) demonstrates a mesh with N = 8

triangles on a side.

This case tests only the inviscid terms, but the implementation of FC allowed for

using either quadratic or cubic approximations for the gradients. Intuitively, the the cubic

version is expected to be more accurate than the quadratic, and this is clearly seen in

figure 5.2(a). There is no difference between quadratic or cubic gradient accuracy for first or

55

42

(a) Sample Grid (b) MMS Density Solution

Fig. 5.1: Setup for the Method of Manufactured Solutions

second order because the implementation reverted to the standard Green-Gauss derivative

procedure in these cases. Flux Reconstruction has an infinite number of possible solution

options, characterized by the parameter c. Jameson [48] showed that the properties of a

particular method vary with c, and that the method is most accurate when c = 0. For

this particular study, we use c = 0. We integrate in time with both the J-RK and C-RK

schemes. Figure 5.2(b) shows the MMS results for both of these. As expected, the choice

of time-integration scheme does not affect the spatial accuracy.

Figure 5.2(c) shows the comparision between FR and FC. For the first-order method,

both methods are comparable in accuracy. For the second and third-order methods, FC

has an obvious advantage over FR. Comparing figure 5.2(c) with 5.2(a), we see that in the

third-order case, FC loses this advantage should quadratic gradients be used. In a practical

application though, viscous terms would be included, requiring cubic gradients to maintain

the third-order accuracy.

5.2 Timing Studies

The practicing engineer has several decisions and compromises to make concerning

cost, available time and resources, and the required level of accuracy. This section provides

a comparision of FR and FC on the time required to obtain a given level of accuracy.

56

43

101 102 103√
NDOF

10-7

10-6

10-5

10-4

10-3

10-2

10-1

De
ns

ity
 R

M
S

M
M

S
Er

ro
r

1st Order cubic
1st Order quad
2nd Order cubic
2nd Order quad
3rd Order cubic
3rd Order quad

(a) Density errors for various FC orders

100 101 102 103√
NDOF

10-7

10-6

10-5

10-4

10-3

10-2

10-1

De
ns

ity
 R

M
S

M
M

S
Er

ro
r

1st Order carpenter
1st Order jameson
2nd Order carpenter
2nd Order jameson
3rd Order carpenter
3rd Order jameson

(b) Density errors for various FR time integration
schemes

101 102 103√
NDOF

10-7

10-6

10-5

10-4

10-3

10-2

10-1

De
ns

ity
 R

M
S

M
M

S
Er

ro
r

1st Order FR
1st Order FC
2st Order FR
2nd Order FC
3st Order FR
3rd Order FC

(c) Density errors comparing FC and FR

Fig. 5.2: MMS Results

57

44

Benchmarking a numerical scheme depends on several factors, including, but not limited

to: the skill of the programmer, method of implementing the scheme, choice of compiler

and various optimizations, and hardware used. Finding the limiting factor among so many

variables is an incredibly difficult, making benchmarks questionable at best. In general, a

scheme that delivers the same accuracy in a shorter time will be better than another that

takes longer.

The FR and FC implementations were written by the same team of programmers

in a manner similar to each other. Basic optimization rules were adhered to, (memory

layout,etc.) but no special effort was made to discover optimal implementations. All tests

were run in serial.

In this section, we show the timing results for the previous numerical experiments.

Here we will present detailed results for the Order of Accuracy study from section 5.1. Due

to the conclusions drawn from this study, such detail will not be presented for the other

conducted experiments.

The results presented here used the same setup from section 5.1. In order to uncover a

hardware preference of the implementations, the tests were run on two different setups. The

first setup was an AMD Phenom II X4 955 3.2 Ghz CPU, with 1333Mhz DDR3 memory.

Compilation was done using version 4.8.1 of the GNU compiler suite. The second architec-

ture was an Intel Core i3-2330M 2.2Ghz CPU, with 1333Mhz DDR3 memory. Compilation

was done using version 4.7.3 of the GNU compiler suite. For both setups, the O3 optimiza-

tion level was used with full use of available SSE registers.

Four categories of plots are shown in figures 5.3, 5.4, and 5.5. Three of the categories

are plotted against the true solution error in density instead of NDOF or a characteristic

length scale. This can be interpreted as the amount of effort required to achieve a given

level of solution error. These numbers should not be interpreted as hard values, but indicate

trends of the methods as more accuracy is required.

The first plot category is a density RMS convergence plot. This shows the RMS level of

the density variable as a function of iteration, which should go to zero for a steady-state case.

58

45

Iteration convergence is not dependant on the hardware, but should only be a function of

the numerical scheme and the particular problem to be solved. The second category shows

the number of iterations versus level of accuracy. The third category shows the elapsed

walltime versus level of accuracy. The results for both the AMD and Intel setups are shown

for the second and third categories. The fourth category shows the time per iteration of

the method vs. level of accuracy. These plots also show the standard deviation to give a

measure of the effect of “Operating System Jitter” on the walltime.

Figure 5.3 compares various implementations of Flux Correction. These show the

difference in the traditional second-order linear Galerkin method (second), Flux Correction

with quadratic gradients (quad), Flux Correction with cubic gradients (cubic), and Flux

Correction with full p multi-grid, implicit residual smoothing, and relaxation. For all cases,

a maximal CFL was determined and used.

Figure 5.4 compares the J-RK (jameson) and C-RK (carpenter) time-integration meth-

ods for the third-order Flux Reconstruction. For both cases, c = 0.043, and a maximal CFL

was determined and used.

Figure 5.5 is a restatement of the J-RK FR results, the cubic FC and the multi-grid

cubic FC results. This allows for a closer consideration of the two methods.

The various FC tests easily highlight the superiority of FC over the traditional Galerkin

method. From the walltime plots in figures 5.3(c) and 5.3(d), it is obvious that as the error

goes down, the second-order method takes longer than the cubic methods to achieve the

same level of accuracy. Another most interesting aspect of Flux Correction is shown in the

number of iterations to convergence (figure 5.3(b)). The second-order and quadratic cases

exhibit the expected increase in iterations on the finest mesh, while the cubic case shows a

decrease in needed iterations with decreasing error. It is hypothesized that this is because

the finer meshes result in smoother cubic polynomials. Coarser meshes might be exhibiting

non-existant solution oscillations, thus taking longer to converge to the correct solution. The

multigrid case keeps the number of iterations fairly level, as is expected. While multi-grid

did not significantly decrease the time required, it did significantly decrease the required

59

46

0 200 400 600 800 1000 1200
Iterations

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6
De

ns
ity

 R
M

S
second
quad
cubic
multi

(a) FC convergence history on fine grid

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

400

600

800

1000

1200

1400

1600

1800

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

second
quad
cubic
multi

(b) FC iterations to RMS convergence for given true
accuracy

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

Ti
m

e
(s

)

second
quad
cubic
multi

(c) FC walltime to given accuracy on AMD Phenom
II

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

Ti
m

e
(s

)

second
quad
cubic
multi

(d) FC time for given accuracy on Intel i3

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

101

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

second
quad
cubic
multi

(e) FC time per iteration for given accuracy on AMD
Phemon II

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

second
quad
cubic
multi

(f) FC time per iteration for given accuracy on Intel
i3

Fig. 5.3: Results from Flux Correction Time Studies.

60

47

0 1000 2000 3000 4000 5000
Iterations

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

De
ns

ity
 R

M
S

J-RK
C-RK

(a) FR convergence history on fine grid

10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

J-RK
C-RK

(b) FR iterations to RMS convergence for given true
accuracy

10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

104

Ti
m

e
(s

)

J-RK
C-RK

(c) FR walltime to given accuracy on AMD Phenom
II

10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

104

Ti
m

e
(s

)

J-RK
C-RK

(d) FR time for given accuracy on Intel i3

10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

J-RK
C-RK

(e) FR time per iteration for given accuracy on AMD
Phemon II

10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

J-RK
C-RK

(f) FR time per iteration for given accuracy on Intel
i3

Fig. 5.4: Results from Flux Reconstruction Time Studies. These plots show two possible
cases. The first is integrating in time using J-RK, the second using C-RK.

61

48

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

De
ns

ity
 R

M
S

J-RK FR
Cubic FC
Cubic FC with Multigrid

(a) FR vs FC convergence history on fine grid

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

0

500

1000

1500

2000

2500

3000

3500

4000

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

J-RK FR
Cubic FC
Cubic FC with Multigrid

(b) FR vs FC iterations to RMS convergence for
given true accuracy

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

104

Ti
m

e
(s

)

J-RK FR
Cubic FC
Cubic FC with Multigrid

(c) FR vs FC walltime to given accuracy on AMD
Phenom II

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

100

101

102

103

104

Ti
m

e
(s

)

J-RK FR
Cubic FC
Cubic FC with Multigrid

(d) FR vs FC time for given accuracy on Intel i3

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

101

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

J-RK FR
Cubic FC
Cubic FC with Multigrid

(e) FR vs FC time per iteration for given accuracy
on AMD Phemon II

10-7 10-6 10-5 10-4 10-3 10-2

Density RMS MMS Error

10-2

10-1

100

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

J-RK FR
Cubic FC
Cubic FC with Multigrid

(f) FR vs FC time per iteration for given accuracy
on Intel i3

Fig. 5.5: Comparisons from Time Studies. These plots show the comparision of the J-RK
FR timings versus the third-order cubic gradient FC timings and the third-order cubic
gradient full mutli-grid with implicit residual smoothing and relaxation factors FC.

62

49

iterations. This is expected to have a larger impact in more difficult, boundary-driven flows.

The FR tests show a rather surprising indifference to the time-integration method

used. The main difference between the J-RK and C-RK shows in the iterations necessary

for a certain level of error. The allowable CFL was also significantly, with J-RK having a

maximum CFL of 9, and C-RK having a maximum CFL of 23. The time required, however,

was almost the same. The difference could become more pronounced in a more difficult

steady-state case, for which J-RK was designed.

The FR and FC codes both showed a preference to the Intel Core i3 setup. This

could be due to any number of reasons, including more available registers, better compiler

optimizations or faster IO speeds. The difference in timing however, ended up being slight.

The important aspect of this comparision is that the trends of the results did not change

across hardware setups. The error bars on the time iteration plots show that OS Jitter was

significant on the less refined meshes. But as the NDOFs increased, it had a smaller impact

on the time until it became almost negligible. Thus the timing with the smallest error is

also the most reliable time on the diagram.

The superiority in the aspect of time for a steady-state solution in a serial computation

becomes apparent when comparing FR and FC directly. The sharp increase in iterations of

FR versus the flat trends of FC in figure 5.5(b) are especially telling. Figure 5.5(d) shows an

almost order of magnitude difference in the time required. It must be remembered, however,

that both implementations are similar, and the implementation might lean more towards a

Continuous Finite Volume Method pattern. This would leave the FR implementation in a

less-than-optimal condition. Moreover, due to the discontinuous nature of FR, it is relatively

easy to parallelize. Williams [27] presented a 3D fully-compressible viscous arbitrarily high-

order FR solver parallelized over multiple CPUs and GPUs with a weak scalability of 90%.

The ease of this parallelization should not be overlooked. The major point that can be found

from the comparision is the number of iterations required to converge to a steady-state. The

flat profile of the FC is very attractive.

63

50

5.3 Isentropic Vortex

For inviscid flow, an isentropic vortex should mathematically last forever, never dis-

sipating into the surrounding medium. By simulating such a vortex, a measure of the

numerical dissipation inherent in a method can be obtained. The isentropic vortex case

considered is the one described by Shu [52]. The case consists of a uniform flow, onto which

an isentropic vortex is added.

ρ = u = P = 1 (5.1a)

v = 0 (5.1b)

∆u = −y ε

2π
exp

(
1

2

(
1−R2

))
(5.1c)

∆v = x
ε

2π
exp

(
1

2

(
1−R2

))
(5.1d)

∆T =
(γ − 1) ε2

8γπ2
exp

(
1−R2

)
(5.1e)

where R =
√
x2 + y2 and ε = 5 is the vortex strength. The exact solution is just a

transposition of the vortex in the flow direction.

For this study, cases were run in a physical domain extending from x : [−10, 50] and

y[−10, 10], with the vortex starting at (0, 0) and ending at (40, 0), taking a total of 40

seconds in physical travel time. A time step of 0.01 seconds was used. The domain is shown

in the density plot of figure 5.6(b). It should be noted that the time step was imposed by

the explicit third-order FR. FC does not suffer from such restrictive physical time steps, due

to the implicit handling of the physical time terms. The boundary was updated with the

exact solution at each physical time step. A structured triangle mesh was formed over the

domain using a constant characteristic length, with the interior nodes perturbed randomly

to introduce some non-uniformity. Meshes with varying characteristic lengths were used.

Figures 5.7 shows density in x at the horizontal centerline of the domain at t = 40.

An absolute error metric is not used here, as separating out temporal and spatial errors is

a difficult task. The discontinuities in the FR plots are due to it’s discontinuous nature.

By not forming a continuous domain from the discontinuous one, we more accurately show

64

51

(a) Subdivided Mesh with 10 × 30 parent elements.

(b) Density plot at t = 40s on finest FC mesh

Fig. 5.6: Isentropic Vortex

the solution as it is implemented. Figure 5.7(a) shows the significant results from Flux

Reconstruction. The third-order FR more closely matched the exact solution than the

second-order FR with only half the NDOFS. The over-shoots at the center of the vortex are

most significant, as they might represent an inability of FR to handle high gradients with a

coarse mesh. This could translate into an inability of the method to correctly handle flows

with shocks in them. As the mesh is refined, the center of the solution becomes much closer

to the exact solution, but still is not perfect.

Figure 5.7(b) shows the significant results from Flux Correction. A huge increase in

accuracy is seen between the traditional Galerkin Method and FC, indicating a substantial

decrease in artificial dissipation with FC. The overshoot manifested in FR is not present

with FC, suggesting a higher tolerance to high-gradient solutions than FR. The FC and

FR plots should not be directly compared due to the disparaging NDOFS and completely

different time-advancing methods. It should also be noted that while FR had more degrees

of freedom, FC had more cells. It is believed that if the size of the cells were smaller in FR,

65

52

37 38 39 40 41 42 43
x

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

De
ns

ity

Exact
FR2:115,200 NDOFS
FR3:57,600 NDOFS
FR3:230,400 NDOFS

(a) FR Results

37 38 39 40 41 42 43
x

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

De
ns

ity

Exact
FC2:11,041 NDOFS
FC3:11,041 NDOFS
FC2:43,681 NDOFS
FC3:43,681 NDOFS

(b) FC Results

Fig. 5.7: Vortex Results

66

53

then the overshoots would not be so prevalent.

In the matter of solution times, FR is a clear winner. The explicit and direct Runge-

Kutta time integration used for FR completed the problem in a time of roughly one to two

hours, while the dual-time approach used for FC took roughly 24 hours to solve. From this

we conclude that if a small time step is required for the unsteady problem at hand, then a

fast, explicit approach is preferable over an implicit one.

5.4 Unsteady, Viscous Flow over a Circular Cylinder

Unsteady, viscous flow over a circular cylinder is used to study the effect of curved

elements on FC. This case has been studied by many researchers, with a fairly comprehensive

review being written by Norberg [53]. Here we present results for flow over a cylinder with

M = 0.2 and Re = 100. At this Reynold’s number, vortices are shed alternately with

a Strouhal number of St = ωL
u = 0.16 − 0.17. Katz and Work [54] have already shown

that FC is capable of predicting accurate Strouhal numbers on strand meshes. We use a

triangularized version of the strand meshes for this case. Three meshes are employed: a

20× 60, 4× 60, and 60× 60, where the first number gives the number of surface elements,

and the second the number of radial elements. These meshes are subdivided according to

the cubic procedure described. Each mesh is run using a linear version and a cubic version.

Table 5.1 lists important mesh statistics. The mesh is extended out to a radial distance

of 50 chord lengths. The course surface discretizations were purposefully chosen so as to

exaggerate the effects of the curvature. The meshes used can be seen in figure 5.9. The

meshes shown are the meshes after the subdivision process. A sample vorticity plot is shown

in figure 5.8.

Solutions were obtained over a physical time duration of 10 seconds using a physical

Parent Mesh Size Total Surface Elements Total Cells NDOFS

20× 60 60 21600 10860
40× 60 120 43200 21720
60× 60 180 64800 32580

Table 5.1: Cylinder Mesh Statistics

67

54

Fig. 5.8: Vorticity plot for unsteady cylinder

(a) 20 × 60 linear mesh (b) 20 × 60 cubic mesh

(c) 40 × 60 linear mesh (d) 40 × 60 cubic mesh

(e) 60 × 60 linear mesh (f) 60 × 60 cubic mesh

Fig. 5.9: Meshes used for unsteady flow over a cylinder

68

55

time step of 2 × 10−3 seconds, resulting in around 50 complete periods of oscillation with

around 100 physical time steps per period. The flow is initialized with a small flow angle to

initiate shedding quickly. Each test ran with 200 psuedosteps to initiate the solution, with

35 pseudosteps for each physical time step.

The first difference to be noticed is in the meshes, especially the difference between the

linear and cubic meshes for the 20x60 case. With this coarse spacing, the difference between

the two on the surface of the cylinder is easily seen. An unexpected side effect of the curving

procedure, however, is the higher aspect ratio of the subdivided triangles in figure 5.9(b).

In more extreme cases, the subdivision process could result in badly deformed cells, and

this must be taken into consideration when generating meshes for FC. As the meshes are

refined on the surface, this curvature effect is not seen as much, and doesn’t present an

issue.

The major effect of the deformed mesh was an effect on convergence. Figure 5.10

shows the density RMS for the linear 20× 60 mesh and the cubic 20× 60 mesh that failed

to converge well. If the number of pseudosteps in the initiation step was increased to 300

from 200, then the residual for the cubic mesh closely followed that of the linear mesh.

150000 155000 160000 165000 170000 175000
Iterations

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

De
ns

ity
 R

M
S

1st-Order
3rd-Order,bad convergence
3rd-Order,good convergence

Fig. 5.10: Density convergence plot for the 20× 60 mesh

69

56

The Strouhal number for each flow was computed using the lift history of the cylinder.

The results are shown in table 5.2.

It is believed that the lower accuracy is due to the deformed elements generated by the

subdivided triangles, and not necessarily FC itself. The subdivided triangles were linear,

and didn’t follow the interior reference lines of the curved element. This highlights an

important feature of FC; it is highly dependent on the chosen gradient approximation.

Mesh St

1st-order 20× 60 0.158
3rd-order 20× 60 0.150

1st-order 40× 60 0.164
3rd-order 40× 60 0.161

1st-order 60× 60 0.164
3rd-order 60× 60 0.164

Table 5.2: Strouhal Numbers

70

57

Chapter 6

Conclusions and Future Work

This work has examined the merits of Flux Correction. For inviscid flow, it has been

compared against another high-order method known as Flux Reconstruction, a derivative of

the Discontinuous Galerkin and Spectral Difference methods. The effect of curved elements

on Flux Correction has also been examined.

For steady-state cases run in serial, Flux Correction is found to be much faster than

Flux Reconstruction in terms of walltime and iterations to convergence. It also is shown to

be superior in accuracy to Flux Reconstruction.

For unsteady cases however, the dual-time stepping method used is much slower, re-

quiring convergence in psuedo-time for each physical time step. The explicit, direct time-

stepping method used in Flux Reconstruction results in much faster runtimes. If small time

steps are required for temporal accuracy, then an explicit timestepping method is prefer-

able over an implicit one, as the benefit of large time steps is lost. Dual-time stepping is a

common practice in industry, thus this is not a great detriment.

Curved elements were found to have a huge impact on the accuracy of Flux Correction,

which is thought to be because of the choice of gradient approximation. In the cylinder test

case used, cubic meshes were found to reduce the accuracy of the estimated Strouhal number.

It is believed that this is due mainly to bad elements generated in the subdivision process

of the gradient approximation. This also highlights another property of Flux Correction;

it is highly dependent on how high-order gradient estimates are made. Research needs to

be done on high-order gradient techniques, and how Flux Correction reacts to them. High-

order surface elements are still recommended, as they have been proven by others to be

necessary for good accuracy. How curved surface elements affect the surrounding mesh and

subsequent solution is a matter up for further research.

71

58

Flux Correction still has much to prove it’s usefulness as a higher-order method in

Computational Fluid Dynamics. The obvious next step is the extension to three dimensions.

More work needs to be done in the mathematics, to determine if more error terms can

be cancelled, therefore increasing the order of the method. Application of the method to

turbulence, including LES is currently being explored. The major appeal of Flux Correction

as a higher-order method is the minor changes that can be made to an existing code base

in order to implement it. Thus, in the future, it is intended to see if such can be done on

standard commercial and free CFD solvers, such as FLUENT or OpenFOAM.

72

59

References

[1] Wang, Z. J., “High-order methods for the Euler and Navier–Stokes equations on un-
structured grids,” Progress in Aerospace Sciences, Vol. 43, 2007, pp. 1–41.

[2] Bassi, F. and Rebay, S., “High-order accurate discontinuous finite element solution
of the 2D euler equations,” Journal of Computational Physics, Vol. 138, No. 2, 1997,
pp. 251–285.

[3] Gao, H., Wang, Z. J., and Liu, Y., “A study of curved boundary representaitons for
2D high order Euler ssolver.” Journal of Scientific Computing , Vol. 34, No. 3, 2008,
pp. 260–286.

[4] Vincent, P. and Jameson, A., “Facilitating the Adoption of Unstructured High-Order
Methods Amongst a Wider Community of Fluid Dynamicists,” Mathematical Modelling
of Natural Phenomena, Vol. 6, No. 3, 2011, pp. 97–140.

[5] Jameson, A., “Advances in Bringing High-order Methods to Practical Applications in
Computational Fluid Dynamics,” 20th AIAA Computational Fluid Dynamics Confer-
ence, No. AIAA 2011-3226, American Institute of Astronautics and Aeronautics, June
2011.

[6] Barth, T. and Frederickson, P., “Higher order solution of the Euler equations on un-
structured grids using quadratic reconstruction,” American Institute for Astronautics
and Aeronautics 28th Aerospace Sciences Meeting , American Institute of Astronautics
and Aeronatics, January 1990.

[7] Delanaye, M. and Liu, Y., “Quadratic reconstruction finite volume schemes on 3D ar-
bitrary unstructured polyhedral grids,” American Institute for Astronautics and Aero-
nautics 14th Computational Fluid Dynamics Conference, American Institute for As-
tronautics and Aeronautics, November 1999.

[8] Abgrall, R., “On Essentially Non-Oscillatory Schemes on Unstructured Meshes: Anal-
ysis and Implementation,” ICASE Report 92-74, National Aeronautics and Space Ad-
ministration, December 1992.

[9] Barth, T. J. and Deconinck, H., High-order Methods for Computational Physics,
Springer Verlag, 1999.

[10] Friedrich, O., “Weighted Essentially Non-Oscillatory Schemes for the Interpolation of
Mean Values on Unstructured Grids,” Journal of Computational Physics, Vol. 144,
No. 1, July 1998, pp. 194–212.

[11] Hu, C. and Shu, C.-W., “Weighted Essentially Non-oscillatory Schemes on Triangular
Meshes,” Journal of Computational Physics, Vol. 150, No. 1, March 1999, pp. 97–127.

73

60

[12] Sherwin, S. J. and Karniadakis, G. E., “A new triangular and tetrahedral basis for
high-order (hp) finite element methods,” International Journal for Numerical Methods
in Engineering , Vol. 38, No. 22, November 1995, pp. 3775–3802.

[13] Karniadakis, G. E. and Sherwin, S. J., Spectral/hp Element Methods for Computational
Fluid Dynamics, Oxford Scientific Publications, 2005.

[14] Brooks, A. N. and Hughes, T. J. R., “Streamline Upwind/Petrov-Galerkin formula-
tions for Convection dominated Flows with particular emphasis on the Incompressible
Navier-Stokes Equations,” Computer Methods in Applied Mechanics and Engineering ,
Vol. 32, No. 1-3, September 1982, pp. 199–259.

[15] Cockburn, B. and Shu, C.-W., “The Local Discontinuous Galerkin Method for Time-
Dependent Convection-Diffusion Systems,” SIAM Journal on Numerical Analysis,
Vol. 35, No. 6, 1998, pp. 2440–2463.

[16] Cockburn, B., Karniadakis, G. E., and C.W.Shu, Discontinuous Galerkin methods:
Theory, Computation and Applications, Springer, 2000.

[17] Wang, Z. J. and Liu, Y., “Spectral (finite) volume method for conservation laws on
unstructured grids II: Extension to two-dimensional scalar equation,” Journal of Com-
putational Physics, Vol. 179, No. 2, July 2002, pp. 665–697.

[18] Wang, Z. J. and Gao, H., “A unifying lifting collocation penalty formulation including
the discontinuous Galerkin, spectral volume/difference methods for conservation laws
on mixed grids,” Journal of Computational Physics, Vol. 228, No. 21, November 2009,
pp. 8161–8186.

[19] Liang, C., Jameson, A., and Wang, Z. J., “Spectral Difference Method for Compressible
Flow on Unstructured Grids with Mixed Elements,” Journal of Computational Physics,
Vol. 228, No. 8, May 2009, pp. 2847–2858.

[20] Liu, Y., Vinokur, M., and Wang, Z. J., “Spectral Difference Method for Unstructured
Grids I: Basic Formulation,” Journal of Computational Physics, Vol. 216, No. 2, August
2006, pp. 780–801.

[21] Huynh, H. T., “A Flux Reconstruction Approach to High-Order Schemes Including
Discontinuous Galerkin Methods,” 18th AIAA Computational Fluid Dynamics Con-
ference, American Institute of Aeronautics and Astronautics, June 2007.

[22] Huynh, H. T., “A Reconstruction Approach to High-Order Schemes Including Discon-
tinuous Galerkin for Diffusion,” 47th AIAA Aerospace Sciences Meeting Including The
New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics
and Astronautics, January 2009.

[23] Katz, A. and Sankaran, V., “An Efficient Correction Method to Obtain a Formally
Third-Order Accurate Flow Solver for Node-Centered Unstructured Grids,” Journal of
Scientific Computing , Vol. 51, No. 2, 2012, pp. 375–393.

74

61

[24] Pincock, B. and Katz, A., “High-Order Flux Correction for Viscous Flows on Arbi-
trary Unstructured Grids,” 21st AIAA Computational Fluid Dynamics Conference,
The American Institute of Aeronautics and Astronautics, June 2013.

[25] Roache, P. J., “Code Verification by the Method of Manufactured Solutions,” Journal
of Fluids Engineering , Vol. 124, March 2002, pp. 4–10.

[26] Allaneau, Y. and Jameson, A., “Connections between the filtered discontinuous
Galerkin method and the flux reconstruction approach to high order discretizations,”
Computer Methods in Applied Mechanics and Engineering , Vol. 200, No. 4952, 2011,
pp. 3628 – 3636.

[27] Castonguay, P., Williams, D. M., Vincent, P. E., Lopez, M., and Jameson, A., “On
the Development of a High-Order, Multi-GPU Enabled, Compressible Viscous Flow
Solver for Mixed Unstructured Grids,” 20th AIAA Computational Fluid Dynamics
Conference, American Institute of Aeronautics and Astronautics, June 2011.

[28] Dey, S., O’Bara, R. M., and Shepard, M. S., “Curvilinear Mesh Generation in 3D,”
Proceedings of the Eighth International Meshing Roundtable, John Wiley & Sons, 1999,
pp. 407–417.

[29] Allen, C., “Parallel Flow-Solver and Mesh Motion Scheme for Forward Flight Ro-
tor Simulation,” 24th AIAA Applied Aerodynamics Conference, No. AIAA 2006-3476,
American Institute of Aeronautics and Astronautics, June 2006.

[30] Erwin, T., Anderson, W. K., Kapadia, S., and Wang, L., “Three Dimensional Sta-
blilized Finite Elements for Compressible Navier-Stokes,” 20th AIAA Computational
Fluid Dynamics Conference, No. AIAA 2011-3411, AIAA, June 2011.

[31] Solin, P., Segeth, K., and Dolezel, I., Higher-Order Finite Element Methods, Chapman
& Hall/CRC, 2004.

[32] Jameson, A., Baker, T., and Weatherill, N., “Calculation of Inviscid Transonic Flow
Over a Complete Aircraft,” AIAA paper 83-0103, AIAA 24th Aerospace Sciences Meet-
ing, Reno, NV, January 1986.

[33] Haselbacher, A., Grid-Transparent Numerical Method for Compressible Viscous Flows
on Mixed Unstructured Grids, Ph.D. thesis, Loughborough University, 1999.

[34] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler equations
by Finite Volume Methods Using Runge-Kutting Time-Stepping Schemes,” AIAA 14th
Fluid and Plasma Dynamic Conference, No. AIAA 1981-1259, AIAA, June 1981.

[35] Jameson, A. and Mavriplis, D., “Finite volume Solution of the Two-dimensional Euler
Equations on a Regular Triangular Mesh,” AIAA Journal , Vol. 24, 1986, pp. 611–618.

[36] Brandt, A., “Multi-level adaptive solutions to boundary-value problems,” Mathematics
of Computation, Vol. 31, No. 138, April 1977, pp. 333–390.

75

62

[37] Allmaras, S., “Lagrange multiplier implementation of Dirichlet boundary conditions in
compressible Navier-Stokes finite element methods,” 17th AIAA Computational Fluid
Dynamics Conference, No. AIAA 2005-4714, AIAA, June 2005.

[38] Folkner, D. E., Improvement in Computational Fluid Dynamics through Boundary Ver-
ification and Preconditioning , Master’s thesis, Utah State University, 2013.

[39] Williams, D. M., Energy Stable High-Order Methods for Simulating Unsteady, Vis-
cous, Compressible Flows on Unstructured Grids, Ph.D. thesis, Stanford University,
Stanford, California, 2013.

[40] Castonguay, P., Vincent, P. E., and Jameson, A., “A New Class of High-Order Energy
Stable Flux Reconstruction Schemes for Triangular Elements,” Journal of Scientific
Computing , Vol. 51, No. 1, April 2012, pp. 224–256.

[41] Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications, Springer Verlag, 2007.

[42] Peraire, J. and Persson, P., “The Compact Discontinuous Galerkin (CDG) Method for
Elliptic Problems,” SIAM Journal on Numerical Analysis, Vol. 30, 2009, pp. 1806–
1824.

[43] Arnold, D. N., “An Interior Penalty Finite Element Method with Discontinuous Ele-
ments,” SIAM Journal on Numerical Analysis, Vol. 19, 1982, pp. 742–760.

[44] Bassi, F. and Rebay, S., “A High-Order Accurate Discontinuous Finite Element Method
for the Numerical Solution of the compressible Navier–Stokes Equations,” Journal of
Computational Physics, Vol. 131, 1997, pp. 267–279.

[45] Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., and Savini, M., “A High-Order Accu-
rate Discontinuous FInite Element Method for Inviscid and Viscous Turbomachinery
Flows,” 2nd European Conference on Turbomachinery Fluid Dynamics and Thermo-
dynamics, 1997.

[46] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357–372.

[47] Rusanov, V. V., “Calculation of interaction of non-steady shock waves with obstacles,”
Journal of Computational Math and Physics USSR, Vol. 1, 1961, pp. 261–279.

[48] Castonguay, P., Vincent, P. E., and Jameson, A., “Application of High-Order Energy
Stable Flux Reconstruction Schemes to the Euler Equations,” 49th AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace Exposition, No.
AIAA 2011-686, American Institute of Aeronautics and Astronautics, January 2011.

[49] Taylor, M. A., Wingate, B. A., and Bos, L. P., “Several new quadrature formulas for
polynomial integration in the triangle,” Online, Feb 2007.

[50] Carpenter, M. H. and Kennedy, C. A., “Fourth-Order 2N-Storage Runge-Kutta
Schemes,” NASA Technical Memorandum 109112, NASA, June 1994.

76

63

[51] Nastase, C. R. and Mavriplis, D. J., “High-order Discontinuous Galerkin methods using
an hp-multigrid approach,” Journal of Computational Physics, Vol. 213, March 2006,
pp. 330–357.

[52] Shu, C.-W., “Essentially Non-Oscillatory and Weighted non-Oscillatory Schemes for
Hyperbolic Conservation Laws,” Lecture Notes in Mathematics, Vol. 1697, 1998,
pp. 325–432.

[53] Norberg, C., “Fluctuating Lift on a Circular Cylinder: Review and New Measure-
ments,” Journal of Fluids and Structures, Vol. 17, 2003, pp. 57–96.

[54] Katz, A. and Work, D., “High-Order Flux Correction/Finite Difference Schemes for
Strand Grids,” AIAA 52nd Aerospace Sciences Meeting , No. AIAA 2014-0937, AIAA,
January 2014.

77

64

Appendices

78

65

Appendix A

Galerkin Discretization

This appendix describes a simple derivation of the 1D linear Galerkin node-centered

method for a hyperbolic equation. This method starts by discretizing the domain into

several elements, each of which starts and ends with a node, as demonstrated in figure A.1.

The governing equation is multiplied by an arbitrary test function φ, and then integrated

over the entire domain Ω with boundary Γ:

∫
Ω
φut dΩ +

∫
Ω
φfx dΩ =

∫
Ω
φS(x) dΩ. (A.1)

For an arbitrary node i we define φ as a “hat” function which is linear over the two elements

touching node i and zero everywhere else in the domain. This causes the integral over the

domain to only exist in the vicinity of i, and breaks the domain integral into two integrals

of elements ΩA and ΩB. The terms in equation (A.1) are labeled, from left to right: The

unsteady term, the flux term, and the source term.

ii− 1 i+ 1

φi = 1

ui−1

ui

ui+1

ΩA ΩB

Fig. A.1: Discretization used in the derivation of the Linear Galerkin Method

79

66

A.1 Flux Term

The flux term is integrated by parts:

∫
ΩAB

φut dΩ + [φf]ΓAB
−
∫

ΩAB

φxf dΩ =

∫
ΩAB

φS(x) dΩ. (A.2)

The boundary term only exists if node i is on a boundary. If the node is on a left boundary,

ΩA does not exist, and thus only the boundary term for ΩB exists. If the node is on a right

boundary, ΩB does not exist, leaving only element ΩA. The boundary flux term can be

summarized as follows:

[φf]ΓA
= fi, (A.3a)

[φf]ΓB
= −fi, (A.3b)

[φf]ΓAB
= 0. (A.3c)

Handling the integrated flux term is done by recognizing that the derivative of φ is constant,

where

φx|A =
1

xi − xi−1
=

1

∆xA
, (A.4a)

φx|B = − 1

xi+1 − xi
= − 1

∆xB
, (A.4b)

where ∆xA = xi − xi−1 and ∆xB = xi+1 − xi. The integrated flux terms for elements ΩA

and ΩB become

∫
ΩA

φxf dΩ = φx|A
∫

ΩA

f dΩ, (A.5a)∫
ΩB

φxf dΩ = φx|B
∫

ΩB

f dΩ. (A.5b)

80

67

The trapezoidal rule is used to integrate f because f has been chosen to be linear:

∫
ΩA

f dΩ =
1

2
(fi + fi−1) ∆xA, (A.6a)∫

ΩB

f dΩ =
1

2
(fi+1 + fi) ∆xB. (A.6b)

Substituting equations (A.6) and (A.4) into (A.5),

φx|A
∫

ΩA

f dΩ =
1

2
(fi + fi−1) , (A.7a)

φx|B
∫

ΩB

f dΩ = −1

2
(fi + fi+1) . (A.7b)

Equation (A.7) can be seen as averages of the flux at the midpoints of the elements.

Thus, the final form can be written as:

∫
Ω
φxf dΩ = −

(
Fi+1/2 − Fi−1/2

)
. (A.8)

where ∆xi = 1
2 (∆xA + ∆xB). This form looks very similiar to a FV method, and we

interprete it as a finite volume surrounding node i and bounded by the faces at i+ 1/2 and

i− 1/2. This formulation will be different at boundaries. The case of i at the boundary can

easily be derived from the same methodology.

A.2 Unsteady/Source Term

The unsteady and source terms have the same form, and are treated the same. For a

fixed mesh, the time derivative can be moved outside the integral, as follows:

∫
ΩAB

φut dΩ =
∂

∂t

∫
Ω
φudΩ (A.9)

81

68

In a traditional FE fashion, φ and u are interpolated in an element Ωk with left and right

boundary values ΓLk and ΓRk using shape functions:

φk = N1(η)φΓL
k

+N2(η)φΓR
k
, (A.10a)

uk = N1(η)uΓL
k

+N2(η)uΓR
k
. (A.10b)

The shape functions are defined on a standard element using η as a parameterizing variable.

On a standard element, η varies from 0 to 1, starting at the left and moving to the right.

The shape functions for a linear element are

N1(x) = 1− η, N2(η) = η. (A.11)

The transformation of the elements ΩA and ΩB from x to η is given by:

dx

dη

∣∣∣∣
A

= xi − xi−1 = ∆xA, (A.12a)

dx

dη

∣∣∣∣
B

= xi+1 − xi = ∆xB. (A.12b)

Transforming the integrals from x to η, substituting the approximations from equation (A.10)

into equation (A.9), applying the exact values of φ, and integrating separately over elements

ΩA and ΩB, the following discretized unsteady/source term is arrived at:

∂

∂t

∫
ΩAB

φu dΩ =
∂

∂t

[
2

3
ui∆xi +

1

6
(∆xAui−1 + ∆xBui+1)

]
, (A.13)

where ∆xi = 1
2 (∆xA + ∆xB). Equation (A.13) is the equation used for the source terms.

(Drop the time derivative and change u to S.) For the unsteady terms though, this would

result in a full matrix to be solved at each time step. This set of equations can be decoupled

by summing the coefficents onto ui and eliminating the diagonals. This approximation is

called mass lumping in the more rigorous FE derivation. This approximation makes the

82

69

final discretization become

∂

∂t

∫
ΩAB

φu dΩ = ∆xi
∂

∂t
(ui) . (A.14)

The coefficients are different with i on a boundary.

A.3 Final Form

The differential equation in Galerkin form can be written by substituting equation (A.14),

(A.13), and (A.8) into (A.2).

∂ui
∂t
− 1

∆xi

(
Fi+1/2 − Fi−1/2

)
=

1

∆xi

[
2

3
∆xiSi +

1

6
(Si−1∆xA + Si+1∆xB)

]
. (A.15)

This equation is then solved for all nodes i. Both the traditional Galerkin method and flux

correction are identical up until this point. Refer to chapter 3 to see the differences in the

two methods.

83

